• Title/Summary/Keyword: Poly vinylidene fluoride (PVDF)

Search Result 113, Processing Time 0.039 seconds

Phase Separation Behavior of the Blends of PVDF and Carbonyl-containing Polymers in the Presence of an External Electric Field (PVDF와 카르보닐기 함유 고분자 블렌드의 전장하에서의 상거동)

  • 김갑진;이종순;최은화
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.317-318
    • /
    • 2003
  • 전기활성고분자인 poly(vinylidene fluoride)(이하 PVDF로 약기)와 전기비활성 고분자와의 혼화성블렌드에서 외부전장이 이 블렌드의 상분리거동에 미치는 영향을 조사하기에 적합한 전기비활성고분자를 찾은 결과 측쇄에 C=O기를 갖는 poly(ethyl methacrylate)(이하 PEMA)와 주쇄에 C=O기를 갖는 poly(1,4-butylene adipate)(이하 PBA로 약기)가 좋은 후보 고분자로 사용가능함을 보였다. 측쇄에 C=O기를 갖는 고분자인 PMMA와 PVDF와의 블렌드에서 PVDF의 융점보다 상당히 높은 온도인 35$0^{\circ}C$ 이상의 온도에서 lower critical solution temperature (이하 LCST로 약기) 거동을 보이는 것으로 알려져 있기 때문에 [1] 실제로 이들 블렌드계에서 열분해를 배제하면서 LSCT거동을 실험적으로 관찰하기는 불가능하다. (중략)

  • PDF

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

The Application of Ultrasonic Spectroscopy System for Phase Transition of Liquid Crystal (액정의 상전이 측정에 대한 초음파 spectroscopy 시스템의 적용)

  • Kim, Jeong-Koo;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.31-35
    • /
    • 2004
  • A new measuring system for ultrasonic spectroscopy was constructed, utilizing PVDF [poly(vinylidene fluoride)] polymer films as wideband transducers. In a test of its performance, this measuring system was successfully applied to study of the nematic-isotropic phase transition in MBBA(p-methoxybenzylidene-p-n-butylan iline) liquid crystal. We could be confirmed that the phase transition in MBBA is $47^{\circ}C$, which is agree with the exciting optical method. The dependence of frequency on the phase transition was not observed, and but Maximum ultrasonic amplitude is measured for the resonance frequency 2MHz in PVDF transducers, These results shows that the spectroscopy with PVDF transducers takes advantage of studying the transient phenomena. When our apparatus is applied in medical purposes, It will be possible diagnostic for sickle-cell anemia and arterial sclerosis.

  • PDF

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor (분포형 촉각센서를 위한 압전성 폴리(비닐리덴 플루오라이드) 필름의 극화 특성)

  • Lee Kyungsub;Kim Dongouk;Kim Hyungtae;Jung Kwangmok;Choi Hyoukryeol;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.361-366
    • /
    • 2004
  • The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the $\beta$-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The $\beta$-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 $\times$ 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.

A study on the manufacture and dielectric of the polyvinylidene fluoride thin films through vapor deposition method (진공증착법을 이용한 PVDF박막의 제작과 유전 특성에 관한 연구)

  • Park, S.H.;Im, U.C.;Cho, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.420-422
    • /
    • 1995
  • PVDF (polyvinylidene fluoride) has at least from known crystalline structure ( ; they are referred to as the $\alpha$, $\beta$, $\gamma$ and $\alpha_p$ phase or forms II, I, III and $IV_p$). In this study, the manufactured PVDF thin films through vapor deposition method had for II ( ; the substrate temperature at 30$^{\circ}C$). The dielectric behavior of poly(vinylidene fluoride) is affected by orientation and crystal modification. The very high value of the dielectric constant for high temperature conditioned film is believed to be due to the orientation effect. The loss peak caused by molecular motion of the molecules in crystalline regions.

  • PDF

Electrical Properties and Self-poling Mechanism of CNT/PVDF Piezoelectric Composite Films Prepared by Spray Coating Method

  • Lee, Sunwoo;Jung, Nak-Chun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.256-256
    • /
    • 2013
  • Carbon nanotubes (CNT) / polyvinylidene fluoride (PVDF) piezoelectric composite films for nanogenerator devices were fabricated by spray coating method. When the CNT/PVDF mixture solution passes through the spray nozzle with small diameter by the compressed nitrogen gas, electric charges are generated in the liquid by a triboelectric effect. Then randomly distributed ${\beta}$ phase PVDF film could be re-oriented by the electric field resulting from the accumulated electrical charges, and might be resulted in extremely one-directionally aligned ${\beta}$ phase PVDF film without additional electric field for poling. X-ray diffraction patterns were used to investigate crystal structure of the CNT/PVDF composite films. It was confirmed that they revealed extremely large portion of the ${\beta}$ phase PVDF crystalline in the film. Therefore we could obtain the poled CNT/PVDF piezoelectric composite films by the spray coating method without additional poling process. Charge accumulation and resulting electric field generation mechanism by spray coating method were shown in Fig. 1. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Therefore we can control the performance of the devices fabricated from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

  • PDF

The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries (고전압용 리튬이차전지 바인더 개발을 위한 시뮬레이션 및 전기화학 평가 비교를 통한 산화분해전압 예측 연구)

  • Yu, Jee Min;Kashaev, Alexey;Lee, Maeng-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.177-183
    • /
    • 2013
  • As the development of available binder in the harsh conditions is needed, we propose the proper binder for high-voltage lithium-ion secondary batteries based on the quantum chemistry modeling. The optimized structures, HOMO (Highest Occupied Molecular Orbital) energies and ionization potentials of 4 binders, which were considered from monomer to tetramer, were investigated by the semi-empirical and DFT (Density Functional Theory) calculations. The results show that the ionization potential values by calculation tend to be close to the oxidation potentials from the measurement of linear sweep voltametry (LSV). The order of oxidative resistance from high value to low value is following: poly(hexafluropropylene), poly(vinylidene fluoride), poly(methyl acrylate) and poly(acryl amide). Also these results correspond with the experimental values. Thus, we find the reason why HOMO (Highest Occupied Molecular Orbital) energy of PHFP has the highest value than other binders by analysis of HOMO orbital structures.

Phase Transition and Improvement of Output Efficiency of the PZT/PVDF Piezoelectric Device by Adding Carbon Nanotubes (Carbon Nanotube의 첨가에 의한 PZT/PVDF 압전소자의 상전이와 출력 효율 개선)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.94-97
    • /
    • 2018
  • Lead zirconate titanate/poly-vinylidene fluoride (PZT/PVDF) piezoelectric devices were fabricated by incorporating carbon nanotubes (CNTs), for use as flexible energy harvesting devices. CNTs were added to maximize the formation of the ${\beta}$ phase of PVDF to enhance the piezoelectricity of the devices. The phase transition of PVDF induced by the addition of CNTs was confirmed by analyzing the X-ray diffraction patterns, scanning electron microscopy images, and atomic force microscopy images. The enhanced output efficiency of the PZT/PVDF piezoelectric devices was confirmed by measuring the output current and voltage of the fabricated devices. The maximum output current and voltage of the PZT/PVDF piezoelectric devices was 200 nA and 350 mV, respectively, upon incorporation of 0.06 wt% CNTs.

Synthesis and Characterization of Proton Conducting Graft Copolymer Membranes (수소이온 전도성 가지형 공중합체 전해질막 제조 및 분석)

  • Roh, Dong Kyu;Koh, Jong Kwan;Seo, Jin Ah;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.2-126.2
    • /
    • 2010
  • The "grafting from" technology to prepare the well-defined microphase-separated structure of polymer using atom transfer radical polymerization (ATRP) will be introduced in this presentation. Various amphiphilic comb copolymers were synthesized through this approach using poly (vinylidene fluoride) (PVDF), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE) and poly(vinyl chloride) (PVC) as a macroinitiator. Hydrophilic side chains such as poly (styrene sulfonic acid) (PSSA) or poly (sulfopropyl methacrylate) (PSPMA) were grafted from the mains chains using direct initiation of the chlorine atoms. The structure of mass transport channels has been controlled and fixed by crosslinking the hydrophobic domains, which also provides the greater mechanical properties of membranes. Successful synthesis and microphase-separated structure of the polymer were confirmed by $^1H$ NMR, FT-IR spectroscopy and TEM. The grafted/crosslinked membranes exhibited good mechanical properties (400 MPa of Young's modulus) and high thermal stability (up to $300^{\circ}C$), as determined by a universal testing machine (UTM) and TGA, respectively.

  • PDF