• 제목/요약/키워드: Poly (ADP-ribose)

검색결과 411건 처리시간 0.025초

CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구 (Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells)

  • 김성옥;최영현
    • 생명과학회지
    • /
    • 제26권9호
    • /
    • pp.1015-1021
    • /
    • 2016
  • Pyrimidine 유도체의 일종인 5-fluorouracil (5-FU)은 광범위하게 사용되는 항암제의 일종으로, thymidylate synthase의 활성을 억제시켜 핵산의 합성 및 대사기능 자애 유발 물질이다. 본 연구에서는 Ewing′s 육종 CHP-100 세포에서 5-FU의 증식억제와 연관된 기전 해석으로 시도하였다. 본 연구의 결과에 의하면, 5-FU 처리 시간의 경과에 따른 CHP-100 세포의 증식억제가 세포주기 G1 arrest 유발에 따른 것임을 알 수 있었다. 5-FU에 의한 CHP-100 세포의 G1 arrest는 retinoblastoma protein (pRB)의 탈인산화에 따른 전사인자 E2F-1 및 E2F-4와의 결합 촉진과 연관성이 있었다. 비록 5-FU 처리가 cyclin-dependent kinases의 발현에는 크게 영향을 주지 않았으나, 정상배지에서 배양된 대조군에 비하여 cyclin A 및 B의 발현이 5-FU 처리 시간 의존적으로 억제되었다. 또한 5-FU에 의한 CHP-100 세포의 G1 arrest는 apoptosis 유도와 연관이 있음을 핵 내 염색질의 응축에 따른 apoptotic body의 형성증가, poly (ADP-ribose) polymerase의 단편화 및 annexin V 염색 등을 통하여 확인하였다. 아울러 5-FU는 pro-apoptotic Bax 단백질의 발현 증가 및 anti-apoptotic Bcl-2의 발현 감소를 통한 mitochondrial membrane potential의 소실을 촉진시켰으며, 이로 인하여 미토콘드리아에서 세포질로의 cytochrome c 유리가 증가시켰음을 알 수 있었다. 따라서 본 연구의 결과는 5-FU에 의한 CHP-100 세포의 증식억제와 연관된 G1 arrest 및 apoptosis 유도에는 pRB의 인산화 억제 및 미토콘드리아 기능의 손상이 최소한 관여하고 있음을 의미하는 것이다.

무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과 (Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts)

  • 허메이통;김지현;김영실;박혜숙;조은주
    • 한국산학기술학회논문지
    • /
    • 제20권6호
    • /
    • pp.95-103
    • /
    • 2019
  • 대표적인 치주질환인 치주염은 출혈, 통증 및 치아 손실을 초래하며, 산화적 스트레스는 치주염의 주요 원인으로 알려져 있다. 본 연구는 지방조직 유래 무막줄기세포추출물의 $H_2O_2$ 유도 산화적 손상에 대한 치주염 보호 효과를 확인하고자, 치주인대 섬유모세포(human periodontal ligament fibroblasts; HPLF)를 이용하여 세포 생존율, 염증 및 세포 사멸 관련 단백질 발현을 측정하였다. $H_2O_2$로 산화적 스트레스를 유도한 HPLF 세포에 무막줄기세포추출물 처리 시, $H_2O_2$만을 처리한 control군에 비해 유의적으로 세포 생존율이 증가함을 통해 산화적 손상에 대한 세포 보호 효과를 확인하였다. 또한, 무막줄기세포추출물은 nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase 및 interleukin-6와 같은 염증 관련 단백질 발현을 감소시켜 $H_2O_2$로 유도된 염증반응 보호 효과를 확인할 수 있었다. 뿐만 아니라, 무막줄기세포추출물 처리 군은 caspase-9, -3, poly (ADP-ribose) polymerase 단백질 발현 감소와 B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 비율을 저하시켜 $H_2O_2$ 유도 산화적 손상에 대한 세포사멸 보호 효과를 보였다. 따라서 지방조직 유래 무막줄기세포추출물은 $H_2O_2$ 유도 산화적 손상에 대한 HPLF 세포의 염증반응 및 세포사멸을 저해함으로써 치주염으로부터 보호 효과가 있어, 치주질환 치료용 소재로써의 활용 가능성이 있을 것으로 기대된다.

Anticancer Effect of Thymol on AGS Human Gastric Carcinoma Cells

  • Kang, Seo-Hee;Kim, Yon-Suk;Kim, Eun-Kyung;Hwang, Jin-Woo;Jeong, Jae-Hyun;Dong, Xin;Lee, Jae-Woong;Moon, Sang-Ho;Jeon, Byong-Tae;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.28-37
    • /
    • 2016
  • Numerous plants have been documented to contain phenolic compounds. Thymol is one among these phenolic compounds that possess a repertoire of pharmacological activities, including anti-inflammatory, anticancer, antioxidant, antibacterial, and antimicrobial effects. Despite of the plethora of affects elicited by thymol, its activity profile on gastric cancer cells is not explored. In this study, we discovered that thymol exerts anticancer effects by suppressing cell growth, inducing apoptosis, producing intracellular reactive oxygen species, depolarizing mitochondrial membrane potential, and activating the proapoptotic mitochondrial proteins Bax, cysteine aspartases (caspases), and poly ADP ribose polymerase in human gastric AGS cells. The outcomes of this study displayed that thymol, via an intrinsic mitochondrial pathway, was responsible for inducing apoptosis in gastric AGS cells. Hence, thymol might serve as a tentative agent in the future to treat cancer.

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • 제45권9호
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.

Momordica charantia Protects against Cytokine-induced Apoptosis in Pancreatic $\beta$-Cells

  • Kim, Kyong;Kim, Hye-Young
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.947-952
    • /
    • 2008
  • The unripe fruit of Momordica charantia (MC) has been shown to possess antidiabetic activity. However, the mechanism of its antidiabetic action has not been fully understood. In this study, the effects of the aqueous ethanolic extract of MC (AEE-MC) were evaluated on the apoptosis in pancreatic $\beta$-cells treated with a combination of the cytokines, interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-$\alpha$, and interferon (IFN)-$\gamma$. In MIN6N8 cells, the inhibitory effect of AEE-MC was significantly observed at 2 to 50 ${\mu}g/mL$: a 26.2 to 55.6% decrease of cytoplasmic DNA fragments quantified by an immunoassay. The molecular mechanisms, by which AEE-MC inhibited $\beta$-cell apoptosis, appeared to involve the inhibition on the expression of p21, Bax, and Bad, the up-regulation of Bcl-2 and Bcl-$X_L$, and the inhibition on the cleavage of caspase-9, -7, and -3 and poly (ADP-ribose) polymerase. This study suggests that MC may inhibit cytokine-induced apoptosis in $\beta$-cells and, thus, may contribute via this action to the antidiabetic influence in diabetes.

천금위경탕의 인체 폐암세포 증식억제에 관한 연구 (Anti-proliferative Effects of Cheonkumwikyung-tang In A549 Human Lung Carcinoma Cells)

  • 박봉규;박동일
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1147-1152
    • /
    • 2004
  • To investigate the anti-cancer effects of aqueous extract of Cheonkumwikyung-tang (CKWKT) on the growth of human lung carcinoma cell line A549, we performed various biochemical experiments such as the effects of CKWKT on the cell proliferation and viability, the morphological changes, the effects on expression of apoptosis and cell growth-regulatory gene products. Results obtained are as follow; CKWKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effect by CKWKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CKWKT treatment induced apoptotic cell death of A549 cells in a concentration-dependent manner, which was associated with inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ1. Western blot analysis revealed that the levels cyclin-dependent kinase inhibitor p21 expression were induced by CKWKT treatment in A549 cells. Taken together, these findings suggest that CKWKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and CKWKT may have therapeutic potential in human lung cancer.

Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells

  • Sa, Duck-Jin;Lee, Eun-Jee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • 제25권3호
    • /
    • pp.113-118
    • /
    • 2009
  • Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration ($1{\sim}$50 ${\mu}$M) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 ${\mu}$M) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 ${\mu}$M of menadione, and very low at 100 ${\mu}$M of menadione. Taken together, our results showed that menadione induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.

저근백피(樗根白皮) 추출물에 의한 급성 림프성 백혈병 Jurkat Lymphocytes의 세포고사 유도 및 신호기전 연구 (Study of Signaling Pathway on Apoptotic Cell Death Induced by Extract of Ailanthus altissima in Human Jurkat Lymphocytes)

  • 이기옥;김애화;임규상;윤용갑
    • 대한한의학방제학회지
    • /
    • 제25권3호
    • /
    • pp.349-362
    • /
    • 2017
  • Objectives : We investigated whether the components of Ailanthus altissima induced apoptotic cell death in Jurkat acute lymphoblastic leukemia (ALL) cells. Methods : Regulation of cell proliferation is a complex process involving the regulated expression and/or modification of discrete gene products, which control transition between different stages of the cell cycle. Results : Upon treatments with Ailanthus altissima, the concentration-dependent inhibitions of cell viability were observed as compared to untreated control group. The capability of Ailanthus altissima to induce apoptosis was associated with proteolytic cleavage of specific target proteins such as poly(ADP-ribose)polymerase (PARP) and beta-catenin proteins suggesting the possible involvement of caspases. Ailanthus altissima also caused apoptosis as measured by cell morphology and DNA fragmentation. Conclusions : These results indicate that the increase of apoptotic cell death by Ailanthus altissima may be due to the inhibition of cell cycle in human Jurkat lymphocytes. Conclusively, these current and further findings will provide novel approaches to understanding and treating major diseases.

Effects of Sunghyangchungisan(SHCS) on Oxidant-induced Cell Death in Human Neuroglioma Cells

  • Kim Na-Ri;Kwon Jung-Nam;Kim Young-Kyun
    • 대한한의학회지
    • /
    • 제26권2호
    • /
    • pp.63-76
    • /
    • 2005
  • Objectives: Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and longterm neurodegenerative diseases. This study was undertaken to examine whether Sunghyangchungisan(SHCS), a well-known prescription in Korean traditional medicine, might have beneficial effects on ROS-induced brain cell injury. Methods: Human neuroglioma cell line A172 and H2O2 were employed as an experimental model cell and oxidant. Results: SHCS effectively protected the cells against both the necrotic and apoptotic cell death induced by H2O2. The effect of SHCS was dose-dependent at concentrations ranging from 0.2 to 5mg/ml. SHCS significantly prevented depletion of cellular ATP and activation of poly (ADP-ribose) polymerase induced by H2O2. It also helped mitochondria to preserve its functional integrity estimated by MTT reduction ability. Furthermore, SHCS significantly prevented H202-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that SHCS might exert its role as a powerful scavenger of intracellular ROS. Conclusions: The present study provides clear evidence for the beneficial effect of SHCS on ROS-induced neuroglial cell injury. The action of SHCS as an ROS-scavenger might underlie the mechanism.

  • PDF