• Title/Summary/Keyword: Poly(vinyl pyrrolidone)

Search Result 60, Processing Time 0.028 seconds

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Controlling Size and Distribution for Nano-sized Polystyrene Spheres

  • Yun, Dong-Shin;Lee, Hyeong-Seok;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1345-1348
    • /
    • 2010
  • Highly monodisperse polystyrene (PS) nanospheres were fabricated by surfactant-free emulsion polymerization in water using styrene, 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AIBA), and poly(vinyl pyrrolidone) (PVP). The size and distribution of the PS nanospheres were systematically investigated in terms of initiator concentration, stabilizer concentration, reaction temperature, reaction time, and reactant concentration. With increasing AIBA initiator concentration, PS particle sizes are raised proportionally, and can be controlled from 120 to 380 nm. Particle sizes were reduced with increasing PVP concentration. This decrease occurs because a high PVP concentration leads to a large number of primary nuclei in the early stage of polymerization. When the reaction temperature increased, the sizes of the PS particles decrease slightly. The particles grew quickly during the initial reaction stage (1-3 h) and the growth rate became steady-state after 6 h. The PS sizes approximately doubled when the reactant (styrene, PVP, azo-initiator) concentrations were increased by a factor of eight.

Fabrication of Uniform Hollow Silica Nanospheres using a Cationic Polystyrene Core

  • Yun, Dong-Shin;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1534-1538
    • /
    • 2011
  • Uniform, hollow nanosilica spheres were prepared by the chemical coating of cationic polystyrene (cPS) with tetraethylorthosilicate (TEOS), followed by calcination at 600 $^{\circ}C$ under air. cPS was synthesized by surfactant-free emulsion polymerization using 2,2'-azobis (2-methyl propionamidine) dihydrochloride as the cationic initiator, and poly(vinyl pyrrolidone) as a stabilizer. The resulting cPS spheres were 280 nm in diameter, and showed monodispersion. After coating, the hollow silica product was spherically shaped, and 330 nm in diameter, with a narrow distribution of sizes. Dispersion was uniform. Wall thickness was 25 nm, and surface area was 96.4 $m^2/g$, as determined by BET. The uniformity of the wall thickness was strongly dependent upon the cPS surface charge. The effects of TEOS and ammonia concentrations on shape, size, wall thickness, and surface roughness of hollow $SiO_2$ spheres were investigated. We observed that the wall thicknesses of hollow $SiO_2$ spheres increased and that silica size was simultaneously enhanced with increases in TEOS concentrations. When ammonia concentrations were increased, the irregularity of rough surfaces and aggregation of spherical particles were more severe because higher concentrations of ammonia result in faster hydrolysis and condensation of TEOS. These changes caused the silica to grow faster, resulting in hollow $SiO_2$ spheres with irregular, rough surfaces.

The Role of Surface Oxide of Metal Nanoparticles on Catalytic Activity of CO Oxidation Unraveled with Ambient Pressure X-ray Photoelectron Spectroscopy

  • Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.132-132
    • /
    • 2013
  • Colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has brought new opportunities to unravel the surface structure of working catalysts. Recent studies suggest that surface oxides on transition metal nanoparticles play an important role in determining the catalytic activity of CO oxidation. In this talk, I will outline the recent studies on the influence of surface oxides on Rh, Pt, Ru and Co nanoparticles on the catalytic activity of CO oxidation [1-3]. Transition metal nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. APXPS studies exhibited the reversible formation of surface oxides during oxidizing, reducing, and CO oxidation reaction [4]. General trend is that the smaller nanoparticles exhibit the thicker surface oxides, while the bigger ones have the thin oxide layers. Combined with the nature of surface oxides, this trend leads to the different size dependences of catalytic activity. Such in situ observations of metal nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications. I will also show that the surface oxide can be engineered by using the simple surface treatment such as UV-ozone techniques, which results in changing the catalytic activity [5]. The results suggest an intriguing way to tune catalytic activity via engineering of the nanoscale surface oxide.

  • PDF

Preparation and Characterization of Stable Suspensions of Ni Nanoparticles (Ni 나노 분말을 이용한 안정한 현탁액 제조 및 특성)

  • Lee Eun-Hee;Lee Min-Ku;Rhee Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.138-143
    • /
    • 2006
  • In this study, the effects of the dispersants, i.e., Hypermer KD-2 and poly(l-vinyl-2-pyrrolidone) (PVP), and their concentration on the dispersion stability of Ni nanoparticles ($10nm{\sim}40nm$) in ethanol were investigated by using a visual inspection, a transmission profile (Turbiscan), and a zeta potential measurement. The transmission profiles measured by Turbiscan showed that the particle size increased over the entire height of the sample for suspensions with both the dispersants without showing any particle coalescence and sedimentation. The visual inspection also confirmed that the Ni suspensions with Hypermer KD-2 and PVP were very stable for more than a year. The zeta potential values varied from positive to negative with increasing the dispersant's concentration. The dispersion stability of the suspensions was not affected by both the dispersant's concentration and the zeta potential values. The observed suspension stability of Ni nanoparticles was attributed to the steric effect for the Hypermer KD-2 and to the bridging effect for the PVP.

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Facile Synthesis of Silver Chloride Nanocubes and Their Derivatives

  • Kim, Seung-Wook;Chung, Haeg-Eun;Kwon, Jong-Hwa;Yoon, Ho-Gyu;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2918-2922
    • /
    • 2010
  • We demonstrate a facile route to synthesize silver chloride nanocubes and derivative nanomaterials. For the synthesis of silver chloride nanocubes, silver nitrate and hydrochloric acid were used as precursors in ethylene glycol, and poly (vinyl pyrrolidone) as a surfactant. Molar ratio of the two precursors greatly influenced the morphology and composition of the final products. As-synthesized silver chloride nanocubes showed size-dependent optical properties in the visible region of light, which is likely due to a small amount of silver clusters formed on the surface of silver chloride nanocubes. Moreover, we show for the first time that simple reduction of silver chloride nanocubes with different reducing reagents leads to the formation of delicate nanostructures such as cube-shaped silver-nanoparticle aggregates, and silver chloride nanocubes with truncated corners and with silver-nanograin decorated corners. Additionally, we quantitatively investigated for the first time the evolution of silver chloride nanocubes to silver chloride nanocubes decorated with silver nanoparticles upon exposure to e-beam. Our novel and facile synthesis of silver chloride related nanoparticles with delicately controlled morphologies could be an important basis for fabricating efficient photocatalysts and antibacterial materials.

One-pot synthesis of gold trisoctahedra with high-index facets

  • Kim, Do Youb;Choi, Kyeong Woo;Im, Sang Hyuk;Park, O Ok;Zhong, Xiao-Lan;Li, Zhi-Yuan
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • There have been many efforts on the generating metal nanocrystals enclosed by high-index facets for the use as highly active catalysts. This paper describes a facile synthesis of Au trisoctahedra with high-index facets. In brief, the Au trisoctahdra were prepared by reduction of $HAuCl_4$ in N,N-dimethylformamide (DMF) containing poly (vinyl pyrrolidone) (PVP) and trace amount of $AgNO_3$. The Ag ions in the reaction solution played a critical role in controlling the trisoctahedral shape of the final product by underpotential deposition (UPD) on the Au surfaces. The as-prepared Au trisoctahedra were single crystal and enclosed by high-index {441}, {773} and {331} facets.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

Electrical Properties of PVdF/PVP Composite Filled with Carbon Nanotubes Prepared by Floating Catalyst Method

  • Kim, Woon-Soo;Song, Hee-Suk;Lee, Bang-One;Kwon, Kyung-Hee;Lim, Yun-Soo;Kim, Myung-Soo
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.253-258
    • /
    • 2002
  • The multi-wall carbon nanotubes (MWNTs) with graphite crystal structure were synthesized by the catalytic decomposition of a ferrocene-xylene mixture in a quartz tube reactor to use as the conductive filler in the binary polymer matrix composed of poly(vinylidene fluoride) (PVdF) and poly(vinyl pyrrolidone) (PVP) for the EMI (electromagnetic interference) shielding applications. The yield of MWNTS was significantly dependent on the reaction temperature and the mole ratio of ferrocene to xylene, approaching to the maximum at 800 $^{\circ}C$ and 0.065 mole ratio. The electrical conductivity of the MWNTs-filled PVdF/PVP composite proportionally depended on the mass ratio of MWNTs to the binary polymer matrix, enhancing significantly from 0.56 to 26.7 S/cm with the raise of the mass ratio of MWNTs from 0.1 to 0.4. Based on the higher electrical conductivity and better EMI shielding effectiveness than the carbon nanofibers (CNFs)-filled coating materials, the MWNTs-filled binary polymer matrix showed a prospective possibility to apply to the EMI shielding materials. Moreover, the good adhesive strength confirmed that the binary polymer matrix could be used for improving the plastic properties of the EMI shielding materials.