• Title/Summary/Keyword: Poly(diallyldimethylammonium chloride)

Search Result 13, Processing Time 0.036 seconds

Fabrication of Poly(diallyldimethylammonium chloride) - Patterned Substrates for Patterning of Single Strand DNA Using Ion Implantation

  • Ahn, Mi-Young;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.243-247
    • /
    • 2011
  • In this study, a convenient method for the selective immobilization of single strand DNA (ssDNA) on a polymer surface was described. A positively charged polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), was spin-coated on a tissue culture petridish and the micropatterns of the PDDA were formed by selective ion implantation through a pattern mask. The surface property of the implanted PDDA was investigated by using a surface profiler and FT-IR spectrometer. Cy3-labeled ssDNA was selectively immobilized on the PDDA patterns through ionic interaction and thus, well-defined ssDNA patterns were obtained.

Two Critical Aggregation Concentrations in Interaction of Poly(diallyldimethylammonium chloride) with Anionic Surfactant Sodium Dodecyl Sulfate (폴리(디알릴디메틸암모늄 클로라이드)와 음이온 계면활성제 도데실 황산 소듐의 상호작용에 따른 두 종류의 임계 응집 농도)

  • 김용철;박일현;양경모;조동환
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The interaction between poly(diallyldimethylammonium chloride) (PDADMAC) of positive charge per repeating unit and anionic surfactant, sodium dodecyl sulfate (SDS) has been investigated by light scattering, turbidimetry and fluorescence. Chain behavior of PDADMAC in 0.3 M NaCl aqueous solution seems like neutral polymer chain In good solvent. By adding SDS into PDADMAC solution, strong attractive interaction develops between them, and can be described with two kinds of critical aggregation concentration(CAC). First, at [SDS]/]DADMAC] 0.06, intramolecular critical micellization of SDS occurs inside a single polymer chain. The maximum size of SDS-polymer complex is observed just before intramolecular CAC. Above intramolecular CAC, the size of this complex starts to shrink slowly due to involvement of polymer subchain in micelle. Second, intermolecular CAC is also observed at [SDS]/[DADMAC] 0.5 by means of turbidimetry. Strong aggregation of polymer chains decorated with many micelles occurs after the second CAC, and huge aggregates have formed.

A New Method to Measure the Conversion of Radiation Polymerization of Electrolyte Monomer Diallyldimethylammonium Chloride in Dilute Aqueous Solution

  • Zhang, Yalong;Yi, Min;Ren, Jing;Zhai, Maolin;Ha, Hongfei
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.146-151
    • /
    • 2003
  • The dependence of electrical conductivity on concentrations of diallyldimethylammonium chloride (DADMAC) monomer, linear poly(DADMAC) and their mixture monomer/poly(DADMAC) in dilute aqueous solution exhibits a linear relationship. It was possible to calculate conversion of DADMAC polymerization by measuring its electric conductivity. Although the electrical conductivity of the poly(DADMAC) solution decreased with increasing its molecular weight, in the process of UV or ionizing radiation polymerization the molecular weight of the polymers could be kept constant in the case of fixed temperature, UV-luminous intensity or dose rate. Based on the method mentioned above, the kinetics of UV induced polymerization of DADMAC in aqueous solution was studied; the overall activation energy of polymerization of DADMAC in the water phase was calculated to be 18.8 kJ mol$^{-1}$ . ${\gamma}$-Radiation-induced polymerization of DADMAC in aqueous solution as a function of absorbed dose was studied as well. The conversion of DADMAC increased quickly with dose before 30 kGy and then increased slowly. The experimental data of both UV- and ${\gamma}$-induced polymerization were verified to be reliable by inverted ultracentrifugation method.

The Synthesis of Poly(DADM) Flocculant and Properties in Potable Water Treatment (Poly(DADM) 고분자 응집제의 합성 및 상수처리 특성)

  • 박이순;신준호;최상준;신명철;이석훈
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.687-692
    • /
    • 1998
  • Poly(DADM) was synthesized for the drinking water treatment. Poly(DADM) was produced by the free radical polymerization of diallyldimethylammonium chloride(DADM) monomer and its properties were characterized. The effects of monomer concentration, initiator concentration and reaction time on synthesis of poly(DADM) were investigated. Poly(DADM) flocculant was applied to Nak-dong river water to examine its efficiency in reducing turbidity. The synthesized poly(DADM) was effective as flocculant for drinking water treatment. The addition of 1 mg/L of poly(DADM) flocculant caused the reduction of 50% PAC(polyaluminium chloride).

  • PDF

Effect of Water State in Electroactive Chitosan/Poly (Diallyldimethylammonium Chloride) Hydrogels on Bending Behavior at Various pH Conditions (키토산/폴리디아릴디메틸암모늄클로라이드 전기감응성 고분바 하이드로겔의 굽힘 거동에서 물 상태에 따른 영향 분석)

  • Yoon, Seong-Gil;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.344-347
    • /
    • 2007
  • A interpenetrating polymer network (IPN) hydrogel, composed of chitosan (CS) and poly(diallydimethylammonium chloride) (PDADMAC) was prepared, which exhibited electrical sensitive behavior. The swelling behavior of the CS/PDADMAC SIPN hydrogel was studied by immersion of the gel into various pH buffer solutions, and their stimuli response in electric fields also investigated. In order to clarify the relationship between the equilibrium swelling ratio and bending behavior of the SIPN hydrogels, the state of water in the SIPN hydrogel was also investigated using differential scanning calorimetry (DSC).

Preparation and characterization of some metal-carbon nanotube composites (금속-탄소나노튜브 복합재료에 대한 특성연구)

  • Oh, Weon-Tae;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.61-61
    • /
    • 2008
  • Nanocomposites of metal (gold and silver) nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared with the assistance of various stabilizers for metals and MWNTs. Especially common surfactants such as poly(4-vinylpyridine) (PVP), sodium dodecyl sulfate (SDS), poly(sodium 4-styrene sulfonate) (PSS), and poly(diallyldimethylammonium) chloride (PDDA) were used for the sample preparation. Metal/MWNT nanocomposites were structurally characterized in by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), UV/Vis spectroscopy. In addition, the electrical properties of the nanocomposites were studied by cyclic voltammetry (CV).

  • PDF

Self-assembly Coloration Approach on Cotton Fibers using Porphyrin

  • Kim, Byung-Soon;Li, Xiachuan;Kim, Sung-Hoon;Bae, Jin-Seo;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.23-27
    • /
    • 2008
  • In this work, poly(diallyldimethylammoniumchloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin were considered to produce the self-assembly fabrication films. This method is based on the layer-by-layer (LbL) deposition produced by the electrostatic attraction between positively charged PDDAC and negatively charged porphyrin ions. The result of multilayer fabrication was discussed with the level of color strength (K/S). K/S spectra of the fabricated multilayer films showed gradual increase behaviors. In addition, the color photo images of the fabricated multilayer films showed that PDDAC and porphyrin were successfully attracted by electrostatic self-assembly forces.

Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes (다층 고분자 전해질 막의 나노여과 특성에 미치는 지지체의 영향)

  • Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In a previous study, we probed the potential of poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) nanofiltration (NF) membranes for the separation of monovalent anions, with an emphasis on the selective rejection of $F^-$. Remarkably, deposition of $(PSS/PBADMAC)_4PSS$ films on porous alumina supports yielded membranes that exhibited $Cl^-/F^-$ selectivity > 3 with minimal $Cl^-$ rejection, and a solution flux of $3.5m^3/m^2$-day at 4.8 bar. When the number of PSS/PDADMAC bilayers was increased from 4.5 to 5.5, however, $F^-$ rejection decreased from 73% to 50% and $Cl^-/F^-$ selectivity dropped to 1.9. Addition of another bilayer to form $(PSS/PDADMAC)_6$ PSS films resulted in a significant increase in $Cl^-$ rejection to give essentially no $Cl^-/F^-$ selectivity. The decrease of selectivity with deposition of more than 4.5 bilayers was not expected and it was unclear whether this characteristic was substrate independent. In this study, to investigate the effect of substrates on NF performance of multilayer polyelectrolyte membranes, PSS/PDADMAC films were deposited on 50 kDa polyethersulfone (PES) ultrafiltration supports instead of porous alumina supports. The results indicate that, although fluoride rejection and the number of bilayers at which a maximum $F^-$ rejection occurs are different, the trend is similar for both types of substrates. Therefore, we can conclude that the M: characteristics of multilayer polyelectrolyte membranes may be substrate independent.

Dispersion stability of polyelectrolyte-wrapped carbon black particles in a highly fluorinated solvent

  • Yoon, Hyeon Ji;Choe, Jun Ho;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.25-30
    • /
    • 2018
  • The dielectric medium used in electrophoretic displays (EPDs) is required to be an environmentally friendly solvent with high density, low viscosity, and a large electric constant. Hydrofluoroether, a highly fluorinated solvent with eco-friendly characteristics, is regarded as a viable alternative medium for EPDs, owing to the similarity of its physical properties to those of the conventional EPD medium. Surface modification of particles is required, however, in order for it to disperse in the charged solvent. Also, positive/negative charges should be present on the particle surface to enable electrophoretic behavior. In this study, carbon black particles wrapped with positively charged nitrogen (N-CBs) were fabricated by a simple hydrothermal process using a poly(diallyldimethylammonium chloride) solution as a black coloring agent for the EPD. The dispersion behavior of N-CBs was investigated in various solvents.

Characterization of Au-MWNT nanocomposite in thin films (다중벽 탄소나노튜브와 금나노입자를 사용한 나노박막의 특성연구)

  • Kim, Jung-Soo;Bae, Jong-Seong;Ko, Chang-Hyun;Oh, Won-Tea
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.49-49
    • /
    • 2009
  • Nanocomposites of gold nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared by electrostatic interaction. Gold nanopartic1es were stabilized by polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and poly(sodium-4-styrenesulfonate) (PSS) in aqueous medium, and MWNTs were modified by poly(diallyldimethylammonium)chloride (PDDA) in water. The as-perpared Au-MWNT nanocomposites were structurally and electrically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclo voltammetry (CV). UV/Vis spectra of Au-MWNT nanocomposites showed the characteristic surface plasmon bands in the range of ~515nm, depending on the stabilizers. There is only slight change on the band shape with variation of stabilizing agents for gold nanoparticles. Through FE-SEM and TEM images, the distribution of gold, nanoparticles on the sidewalls of MWNTs was deliberately investigated on Au-MWNT nanocomposites treated with different stabilizers. XPS and CV showed redistribution of electron densities and changes in the binding energy states of nanopartic1es in nanocomposite respectively.

  • PDF