• Title/Summary/Keyword: Poly(dT)

Search Result 141, Processing Time 0.02 seconds

Effect of Ethidium on the Formation of Poly(dA)·[poly(dt)]₂Triplex: A Kinetic Study by Optical Spectroscopic Methods

  • 이길준;현경미;조태섭;Kim, Seog K.;정맹준;한상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.444-449
    • /
    • 1998
  • The kinetics of the formation of triplex $poly(dA){\cdot}[poly(dT)]_2$ from poly(dA)·poly(dT) and poly(dT) is examined by various optical spectroscopic methods, including absorption, circular and linear dichroism (LD) spectroscopy. In the pseudo first order condition, where the poly(dT) concentration is kept lower than that of duplex, the association of the poly(dT) is enhanced by the presence of ethidium; the rate constant is proportional to the amount of ethidium in the mixture. When the concentration of the duplex and the single strand is the same, a spectral change is explained by double exponential curves, indicating that at least two steps are involved, the fast association and slow rearrangement steps. In contrast to the pseudo first order kinetics, the association step in an equimolar condition is not affected by the presence of ethidium. In the rearrangement step, the magnitude of LD decreases with an increase in ethidium concentration, suggesting that the bending of polynucleotide around the intercalation site occurs in the rearrangement step.

A Thermodynamic Investigation into the Stabilization of Poly(dA).[poly(dT)]2 Triple Helical DNA by Various Divalent Metal Ions

  • Choi, Byung-Hoon;Yeo, Ga-Young;Jung, Jin-Ah;Lee, Bae-Wook;Han, Sung-Wook;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2691-2696
    • /
    • 2009
  • Effects of representative group II and transition metal ions on the stability of the $poly(dA){\cdot}[poly(dT)]_2$ triplex were investigated by the van’t Hoff plot constructed from a thermal melting curve. The transition, $poly(dA){\cdot}[poly(dT)]_2\;{\rightarrow}\;poly(dA){\cdot}poly(dT)\;+\;poly(dT)$, was non-spontaneous with a positive Gibb’s free energy, endothermic (${\Delta}H^{\circ}$ > 0), and had a favorable entropy change (${\Delta}S^{\circ}$ > 0), as seen from the negative slope and positive y-intercept in the van’t Hoff plot. Therefore, the transition is driven by entropy change. The $Mg^{2+}$ ion was the most effective at stabilization of the triplex, with the effect decreasing in the order of $Mg^{2+}\;>\;Ca^{2+}\;>\;Sr^{2+}\;>\;Ba^{2+}$. A similar stabilization effect was found for the duplex to single strand transition: $poly(dA){\cdot}poly(dT)\;+\;poly(dT)\;→\;poly(dA)\;+\;2poly(dT)$, with a larger positive free energy. The transition metal ions, namely $Ni_{2+},\;Cu_{2+},\;and\;Zn_{2+}$, did not exhibit any effect on triplex stabilization, while showing little effect on duplex stabilization. The different effects on triplex stabilization between group II metal ions and the transition metal ions may be attributed to their difference in binding to DNA; transition metals are known to coordinate with DNA components, including phosphate groups, while group II metal ions conceivably bind DNA via electrostatic interactions. The $Cd_{2+}$ ion was an exception, effectively stabilizing the triplex and melting temperature of the third strand dissociation was higher than that observed in the presence of $Mg_{2+}$, even though it is in the same group with $Zn_{2+}$. The detailed behavior of the $Cd_{2+}$ ion is currently under investigation.

Stabilization of Poly(dA)·[poly(dT)]₂Triple Helical DNA by Acridine Derivatives: Role of Side Chain in the Triplex Stabilization

  • 현경미;이길준;조태섭;Kim, Seog K.;이세윤
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.528-534
    • /
    • 1997
  • The conformation and stabilization effects of acridine derivatives 9-aminoacridine, an acridine with an aminoalkyl side chain, bis acridine (two acridines linked by an aminoalkyl side chain), and proflavin in the triplex helical poly(dA)·[poly(dT)]2 were investigated by optical spectroscopies. Based on the negative LD and weak positive CD in the acridine absorption wavelength region, we concluded that the acridine moiety of all derivatives are intercalated. We also examined the melting temperatures. Of all the compounds examined, the acridine with an amino alkyl side chain had the strongest effect on the stabilization of the third strand of a poly (dA)·[poly(dT)]2 triplex. The role of the side chain, based on this observation, is discussed.

Binding Properties of Anthryl Derivatives to Synthetic Polynucleotide and the Role of Guanine Amine Group in the Energy Transfer (안트라센 유도체-합성DNA의 결합형태와 에너지전달과정에서 구아닌 염기의 아민기의 역할)

  • Cho, Chang-Beom;Son, Gwan-Su;Han, Sung-Wook;Jung, Maeng-Jun;Chong, Hyun-Suk;Lee, Gil-Jun
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • The binding mode of anthryl derivatives to synthetic polynucleotides were investigated by various spectroscopic methods. The spectroscopic properties of anthracence with metbylamine and methylethylenediamine side chains, complexed with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$, can be summarized as a red-shift, with a strong hypochromism in the absortion spectrum, similar induced CD spectra, and a strong negative LD spectrum with an $LD^r$ magnitude comparable to the DNA absorption region. These observations indicate that anthracene moiety is intercalated between the nucleo-bases of $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$. The side chains did not alter the spectroscopic properties, demonstrating that the binding mode was not affected by them. A strong energy transfer was observed from poly[d(A-T),] and $poly[d(I-C)_2]$ but not from $poly[d(G-C)_2]$, as reported by Kumar et al. (J. Am. Chem. Soc.(1993) 115, 8547). Since the binding mode is the same for all the polynucleotides, the amine group of the guanine base, which protrudes into the minor groove of $poly[d(G-C)_2]$, is concluded to disrupt the energy transfer.

  • PDF

Stabilization of Poly(dA)-[poly(dT)]₂Triplex by Anthryl and Acridine Derivatives: Effect of Side Chains and Nitrogen Atom on the Polycyclic Aromatic Ring

  • 이길준;조창범;이동진;박준원;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.653-656
    • /
    • 1999
  • The effects of anthryl derivatives and 9-aminoacridine on the thermal melting profile of a poly(dA)[poly(dT)]₂triplex were compared 9-Aminoacridine stabilizes the triplex far more effectively than anthryl derivatives. The absorption and CD and LD spectroscopic characteristics of anthryl derivatives are similar to those of 9-aminoacridine when complexed with the triplex; the N atom of acridine, which can act as a hydrogen bond acceptor, plays an important role in triplex stabilization.

Effect of Number and Location of Amine Groups on the Thermodynamic Parameters on the Acridine Derivatives to DNA

  • Kwon, Ji Hye;Park, Hee-Jin;Chitrapriya, Nataraj;Han, Sung Wook;Lee, Gil Jun;Lee, Dong Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.810-814
    • /
    • 2013
  • The thermodynamic parameters for the intercalative interaction of structurally related well known intercalators, 9-aminoacridine (9AA) and proflavine (PF) were determined by means of fluorescence quenching study. The fluorescence intensity of 9AA decreased upon intercalation to DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$]. A van't Hoff plot was constructed from the temperature-dependence of slope of the ratio of the fluorophore in the absence and presence of a quencher molecule with respect to the quencher concentration, which is known as a Stern-Volmer plot. Consequently, the thermodynamic parameters, enthalpy and entropy change, for complex formation was calculated from the slope and y-intercept of the van't Hoff plot. The detailed thermodynamic profile has been elucidated the exothermic nature of complex formation. The complex formation of 9AA with DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$] was energetically favorable with a similar negative Gibb's free energy. On the other hand, the entropy change appeared to be unfavorable for 9AA-poly[$d(G-C)_2$] complex formation, which was in contrast to that observed with native DNA and poly[$d(A-T)_2$] cases. The equilibrium constant for the intercalation of PF to poly[$d(G-C)_2$] was larger than that to DNA, and was the largest among sets tested despite the most unfavorable entropy change, which was compensated for by the largest favorable enthalpy. The favorable hydrogen bond contribution to the formation of the complexes was revealed from the analyzed thermodynamic data.

DNA Methylase and Chloroplast DNA Methylation in Chlamydomonas (Chlamydomonas에서 분리한 DNA Methylase와 엽록체 DNA Methylation)

  • 김남곤
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.415-423
    • /
    • 1992
  • Chlamydomonas reinhardtii 21 gr(mt+) strain의 배우체로부터 두 종류의 DNA methylase를 부분 분리하여 몇가지 기질 DNA에 대한 효소 활성을 측정하였다. DNA methylase I과 II는 동일한 pH와 ionic strength에서 서로 상이한 물리적인 성질과 서로 다른 분자량을 가지며 DNA methylase I과 II는 모두가 DNA 염기 중 adenine보다는 cytosine에 methylation을 수행하는 것으로 생각된다. 합성 DNA를 사용한 실험에서 DNA methylase I과는 달리 DNA methylase II는 poly(dA-dC)·poly(dG-dT)에서 보다 poly(dG-dC)·poly(dG-dC)의 oligonucleotide에서 더 높은 효소활성을 나타내었다. Chlamydomonas reinhardtii에서 추출한 엽록체 DNA를 기질로 사용하였을 때 DNA methylase I과 II 모두가 배우체기 보다는 영양생장기의 엽록체 DNA에 더 높은 활성을 나타내었다.

  • PDF

Binding Mode of [Ruthenium(II)$(1,10-Phenanthroline)_2L]^{2+}\;to\;Poly(dG){\cdot}poly( dC){\cdot}poly(dC)^+$ Triplex DNA

  • Jo, Chang Beom;Jo, Tae Seop;Kim, Bok Jo;Han, Seong Uk;Jeong, Maeng Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1052-1054
    • /
    • 2000
  • Binding geometries of $[Ru(II)(110-phenanthroline)_2L]^2+$, complexes (where L = dipyrido [3,2-a:2',3'-c]phena-zine (DPPZ) or benzodipyrido[3,2-a:2',3'-c] phenazine (BDPPZ)) to poly(dG)${\cdot}$poly(dC)${\cdot}$poly(dC) + triplex DNA (CGC + triplex) has been investigated by linear dichroism and normal absorption spectroscopy. Analysis of the linear dichroism for the CGC+ triplex and $[Ru(II)(phen)_2BDPPZ]^2+$ complex indicates that the extended ligand of the metal complex lie perpendicular to the polynucleotide helix axis. Together with strong hypochromism and red shift in the interligand absorption region, we concluded that the extended BDPPZ or DPPZ ligand in-tercalated between the bases of polynucleotide. The spectral properties of the metal complexes bound to CGC+ triplex are similar to those bound to $poly(dA)[poly(dT)]^2$ triplex (Choi et al., Biochemistry 1997, 36, 214), sug-gesting that the metal complex is located in the minor groove of the CGC+ triplex.

Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes

  • Oh, Byul-Nim;Wu, Qiong;Cha, Mi-Sun;Kang, Hee-Kyung;Kim, Jin-Ah;Kim, Ka-Young;Rajkumar, Eswaran;Kim, Jin-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3223-3228
    • /
    • 2011
  • To quantify the presence of mercuric ions in aqueous solution, double-stranded DNA (dsDNA) of poly(dT) was employed using a light switch compound, $Ru(phen)_2(dppz)^{2+}$ (1) which is reported to intercalate into dsDNA of a right-handed B-form. Addition of mercuric ions induced the dehybridization of poly(dT)${\cdot}$poly(dA) duplexes to form a hairpin structure of poly(dT) at room temperature and the metal-to-ligand charge transfer emission derived from the intercalation of 1 was reduced due to the dehybridization of dsDNA. As the concentration of $Hg^{2+}$ was increased, the emission of 1 progressively decreased. This label-free emission method had a detection limit of 0.2 nM. Other metal ions, such as $K^+$, $Ag^+$, $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Fe^{3+}$, had no significant effect on reducing emission. This emission method can differentiate matched and mismatched poly(dT) sequences based on the emission intensity of dsDNA.

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Chitrapriya, Nataraj;Kim, Raeyeong;Jang, Yoon Jung;Cho, Dae Won;Han, Sung Wook;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2117-2124
    • /
    • 2013
  • The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.