• Title/Summary/Keyword: Poly(ADP-ribose)polymerase

Search Result 410, Processing Time 0.03 seconds

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

Study on the Antileukemic Effect of Galla Rhois

  • Kim, Myung-Wan;Ju, Sung-Min;Kim, Kun-Jung;Yun, Yong-Gab;Han, Dong-Min;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.234-241
    • /
    • 2005
  • Galla Rhois is a nest of parasitic bug, Mellaphis chinensis Bell, in Rhus chinensis Mill. Galla Rhois has been used for the therapy of diarrhea, peptic ulcer, hemauria, etc., that showed various antiinflammatory activity, and other biological properties. We studied the effect of Galla Rhois water extract(GRWE). The cytotoxic activity of GRWE in HL-60 cells was increased in a concentration-dependent manner. GRWE was cytotoxic to HL-60 cells, with $IC_50$ of $100{\mu}g/m{\ell}$. Treatment of GRWE to HL-60 cells showed the fragmentation of DNA in a concentration manner, suggesting that these cells underwent apoptosis. In addition, the flow cytometric analysis revealed GRWE concentration-dependently increased apoptotic cells with hypodiploid DNA content and arrested G1 phase of cell cycle. These results indicate that GRWE may have a possibility of potential anticancer activities. Treatment of HL-60 cells with GRWE was induced activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, caspase-3 was directly activated via caspase-8 activation. GRWE also caused the release of cytochrome c from mitochondria into the cytosol. GRWE-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during GRWE-induced apoptosis in HL-60 cells.

Effect of Arresting MCF-7 Human Breast Carcinoma Cell at G2/M Phase of Trichosanthes Kirilowii (천화분이 MCF-7 유방암 세포주의 G2/M 세포주기 억제에 미치는 영향)

  • Jeong, Seung-Min;Jeong, Mi-Kyung;Ko, Seong-Gyu;Choi, You-Kyung;Park, Jong-Hyeong;Jun, Chan-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.857-862
    • /
    • 2011
  • The purpose of this study is to investigate the anti-proliferative mechanism by Trichosanthes kirilowii (TCK) in MCF-7 human breast carcinoma cell. In this study, we used human breast cancer cell line, Michigan cancer foundation-7 cells (MCF-7 cells). They were co-incubated with 30~200 ${\mu}g$/ml TCK for 48 hours, and cell viability was measured by Water-soluble tetrazolium salt-1 (WST-1) assay. After MCF-7 cells were exposed to 60 ${\mu}g$/ml of TCK for 0, 3, 6, 12, 24, 48 hours, We performed flow analysis cytometry sorting(FACS) and western blot analysis. We investigated the effect of dose-dependent cell growth inhibition by TCK, which could be proved by WST-1 assay. Also, flow cytometry analysis showed that TCK increased percentage of subG1 phase and G2/M phase cell cycle. In addition, TCK induced apoptosis through the expression of caspase-9, -3 and poly(ADP-ribose) polymerase(PARP) activation. Moreover, we showed that ATM-dependent G2/M phase arrest by DNA damage and phosphorylation of chk2, cdc25C, cdc2(Tyr15). Taken together, these results suggest that by G2/M phase arrest through DNA damage and inducing of apoptosis through intrinsic pathway, TCK may have potential tumor suppressor in breast cancer.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Chestnut extract induces apoptosis in AGS human gastric cancer cells

  • Lee, Hyun-Sook;Kim, Eun-Ji;Kim, Sun-Hyo
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with $200{\mu}g/mL$ CPE for 24 hr. CPE at various concentrations ($0-200{\mu}g/mL$) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPR exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

Cytoprotective Effects of Artemisia princeps Extract through Inhibition of Mitochondrial Dysfunction (애엽(艾葉)의 미토콘드리아 보호 효과)

  • Choi, Hee Yoon;Jeggal, Kyung Hwan;Kim, Young Woo;Lee, Jung Woo;Jo, Soo A;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Objectives : Artemisia princeps is used as moxa in moxibustion and traditional herbal medicine. And its extracts or compounds is known to have an efficacy of antioxidant, anti-diabete, anti-cancer, anti-inflammation and neuroprotection. This study was performed to investigate the cytoprotective effect of Artemisia princeps extract (APE) against arachidonic acid (AA)+iron-induced oxidative stress on HepG2 cell. Methods : The effects of APE on cell viability has been assessed using MTT assay. And flow cytometric analysis was performed to estimate APE's effects on mitochondrial function. To investigate its underlying mechanism, related protein was analysed by using immunoblot analysis. Results : Treatment of APE increased relative cell viability, prevented a decline of B-cell lymphoma-extra large (Bcl-xL) and cleavage of poly(ADP-ribose) polymerase (PARP) and procaspase-3, and also protected mitochondrial membrane permeability (MMP) against oxidative stress induced by AA+iron. In addition, APE treatment increased phosphorylation of AMP-activated protein kinase (AMPK) exerts a cytoprotective effect. Conclusions : This results demonstrate that APE has an ability to activation of AMPK which protects cells from AA+iron-induced oxidative stress and restores MMP.

Effects of Schisandrae Fructus Supplementation on Apoptosis and Inflammatory Response in Gastrocnemius Muscle of Dexamethasone-Induced Muscle Atrophy Mice (Dexamethasone에 의하여 유발된 근육 위축 생쥐의 비복근 근섬유에서 apoptosis와 염증 반응에 미치는 오미자 추출물의 영향)

  • Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.363-374
    • /
    • 2017
  • Dried fruits of Schizandra chinensis Baillon, Fructus Schisandrae, have been widely used for many years to prevent and treat various diseases in Asian countries including Korea and Russia. It has recently been reported that extracts of Fructus Schisandrae are effective for controlling muscle and skeletal diseases. In this study, we investigated the efficacy of ethanol extract of Fructus Schisandrae (EEFS) on apoptosis and inflammatory response in gastrocnemius muscle of dexamethasone-induced catabolic muscle atrophy mice as part of natural substance discovery and functional analysis for improving muscle function. According to the results of this study, EEFS supplementation attenuated body weight gains and suppressed calf thickness loss in dexamethasone-induced muscle atrophic mice. Gastrocnemius muscle immunohistochemistry showed that expression of caspase-3 and poly(ADP-ribose) polymerase, which are representative apoptotic markers, was markedly increased in dexamethasone control mice; however, their expression was effectively reduced in the EEFS-fed mice. EEFS supplementation also prevented dexamethasone-induced increases in immunoreactivity of muscle fibers for myostatin, an important negative regulator of skeletal muscle mass. In addition, EEFS significantly normalized the increased numbers of nitrotyrosine, 4-hydroxynonenal and inducible nitric oxide synthase-positive muscle fibers compared to that found in dexamethasone control mice. These results suggest that EEFS protects dexamethasone-induced muscular atrophy by decreasing apoptosis and inflammatory responses, and EEFS is more likely to be developed as a muscle strengthening agent.

Mechanisms of Apoptosis by Combination with Jeongjihwan and Cisplatin in Human Glioblastoma Cells (정지환과 시스플라틴의 신경교아세포종에 대한 세포고사 기전연구)

  • Shin Hak-Soo;Lee Sun-Woo;Lee Min-Goo;Yun Jong-Min;Lee In;Sin Sun-Ho;Moon Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.1-12
    • /
    • 2005
  • Objectives: Malignant gliomas are often treated with cisplatin (cis-diamminedichloroplatinum(II), CDDP) and radiation but results remain unsatisfactory. Since malignant glioma displays moderate resistance to conventional therapy, a new treatment modality is needed to improve the outcome of patients with these tumors. The aim of this study was to investigate the effects of the combined use of Jongjihwan(JJH) and cisplatin(CDDP) on cultured malignant glioma cells, A172. Methodss & Results: The combined use of cisplatin and Jeongjihwan had synergistic effects on Al72 cells during 24 hr-incubation, This treatment resulted in a decrease of cell viability, Which was revealed as apoptosis Characterized by activation of caspase-3 protease as well as cleavage of poly ADP-ribose polymerase (PARP) with change of mitochondria membrane potential transition. The expression of members of the Bcl-2 protein family was modulated during co-treatment with Jeongjihwan and cisplatin. Activation of caspase-3 and mitochondrial alterations were central to co-treatment with Jeongjihwan and cisplatin-induced apoptosis. Conclusions: We conclude that co-treatment with Jeongjihwan and cisplatin-induced activation of the mitochondrial pathway enables cell death. Also, we suggest the combined theory of JJH and cisplatin could be a useful method for glioblastoma.

  • PDF

Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells

  • Kim, Ji Yong;Lee, Jai-Sung;Han, Yong-Seok;Lee, Jun Hee;Bae, Inhyu;Yoon, Yeo Min;Kwon, Sang Mo;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.517-524
    • /
    • 2015
  • Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although $H_2O_2$ ($200{\mu}M$) increased intracellular ROS levels in human MSCs, lycopene ($10{\mu}M$) pretreatment suppressed $H_2O_2$-induced ROS generation and increased survival. $H_2O_2$-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by $H_2O_2$ treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.