• Title/Summary/Keyword: Poly(ADP-ribose)polymerase

Search Result 410, Processing Time 0.024 seconds

Induction of ROS-dependent apoptosis by ethanol extract of Hizikia fusiforme in HT29 colon carcinoma cells (톳 에탄올 추출물에 의한 HT29 결장암 세포의 ROS 의존적 세포사멸 유도)

  • Su Hyun, Hong;Yung Hyun, Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • Hizikia fusiforme, a type of brown algae, is widely used in Asian cuisine. It has been reported to have various pharmacological effects. In this study, the effects of the ethanol extract from H. fusiforme (EAHF) on the proliferation of human colon carcinoma cells were investigated. The effect on the survival of human hepatocarcinoma and colon carcinoma cells was examined, and results revealed that the anti-proliferative effects of EAHF were higher in colon carcinoma cells than in hepatocarcinoma cells. The inhibition of proliferation of HT29 colon carcinoma cells by EAHF treatment was closely related to the induction of apoptosis. EAHF treatment also increased caspase activity and poly(ADP-ribose) polymerase degradation, induced mitochondrial dysfunction, altered Bcl-2 family protein expression, and increased the rate of cytochrome c released from the mitochondria into the cytoplasm. Furthermore, the production of reactive oxygen species (ROS) was markedly stimulated by EAHF treatment, and when ROS production was blocked, EAHF-induced cytotoxicity was significantly attenuated. These results indicate that the anticancer activity of EAHF in HT29 colon carcinoma cells was induced by ROS-dependent mitochondrial impairment. While EAHF exhibited potent anticancer activity in colon carcinoma cells in this study, further studies on the active components of EAHF and their efficacy should be performed.

Induction of Apoptosis of DK-5-62, a Novel (-)-Catechin Derivative Through MAPKs Signaling Pathway in HCT116 Cells

  • Guon, Tae Eun;Shin, Dong-Soo;Chung, Ha Sook
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.298-304
    • /
    • 2022
  • The present study was designed to investigate the molecular mechanisms of DK-5-62, a novel (-)-catechin derivative on HCT116 human colorectal cancer cells. DK-5-62 inhibited the proliferation in dose- and time-dependent manner accompanied by the morphological changes. Effects of DK-5-62 appeared to be mediated by the induction of apoptosis, as manifested through DNA-binding dye Hoechst 33258 staining. Analysis of the mechanism of these events indicated that DK-5-62-treated cells exhibited an increased ratio of Bax/Bcl-2, resulting in the activation of caspase-9, caspase-3, and poly-ADP-ribose polymerase in a dose-dependent manner. Moreover, DK-5-62-induced apoptosis was accompanied by phosphorylation of the mitogen-activated protein kinase family, c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase. These results suggest that HCT116 cells are moderately sensitive to growth inhibition by DK-5-62 via apoptosis, as evidenced by activation of ERK/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8

  • Byung Chul Jung;Hyun-Kyung Kim;Sung Hoon Kim;Yoon Suk Kim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Monocytes are peripheral leukocytes that function in innate immunity. Excessive triglyceride (TG) accumulation causes monocyte death and thus can compromise innate immunity. However, the mechanisms by which TG mediates monocyte death remain unclear to date. Thus, this study aimed to elucidate the mechanisms by which TG induces monocyte death. Results showed that TG induced monocyte death by activating caspase-3/7 and promoting poly (ADP-ribose) polymerase (PARP) cleavage. In addition, TG induced DNA damage and activated the ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 and ATM-and Rad3-related (ATR)/checkpoint kinase 1 pathways, leading to the cell death. Furthermore, TG-induced DNA damage and monocyte death were mediated by caspase-2 and -8, and caspase-8 acted as an upstream molecule of caspase-2. Taken together, these results suggest that TG-induced monocyte death is mediated via the caspase-8/caspase-2/DNA damage/executioner caspase/PARP pathways.

MS-5, a Naphthalene Derivative, Induces Apoptosis in Human Pancreatic Cancer BxPC-3 Cells by Modulating Reactive Oxygen Species

  • Suman Giri;Gyu Hwan Park;Joon-Seok Choi;Eunsook Ma;Kyung-Soo Chun;Sang Hoon Joo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.68-72
    • /
    • 2023
  • Pancreatic cancer is one of the most fatal cancers with a poor prognosis. Standard chemotherapies have proven largely ineffective because of their toxicity and the development of resistance. Therefore, there is an urgent need to develop novel therapies. In this study, we investigated the antitumor activity of MS-5, a naphthalene derivative, on BxPC-3, a human pancreatic cancer cell line. We observed that MS-5 was cytotoxic to BxPC-3 cells, as well as inhibited the growth of cells in a concentration- and time- dependent manner. Flow cytometry analysis revealed that the percentage of annexin V-positive cells increased after MS-5 treatment. We also observed cleavage of caspases and poly (ADP-ribose) polymerase, and downregulation of Bcl-xL protein. Flow cytometry analysis of intracellular levels of reactive oxygen species (ROS) and mitochondrial superoxide suggested that MS-5 induced the generation of mitochondrial superoxide while lowering the overall intracellular ROS levels. Thus, MS-5 may be potential candidate for pancreatic cancer treatment.

Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells

  • Dahae Lee;Sungyoul Choi;Ki Sung Kang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.572-582
    • /
    • 2023
  • Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic β-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic β-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic β-cells.

Gefitinib induces anoikis in cervical cancer cells

  • Byung Chul Jung;Sung-Hun Woo;Sung Hoon Kim;Yoon Suk Kim
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.104-109
    • /
    • 2024
  • Gefitinib exerts anticancer effects on various types of cancer, such as lung, ovarian, breast, and colon cancers. However, the therapeutic effects of gefitinib on cervical cancer and the underlying mechanisms remain unclear. Thus, this study aimed to explore whether gefitinib can be used to treat cervical cancer and elucidate the underlying mechanisms. Results showed that gefitinib induced a caspase-dependent apoptosis of HeLa cells, which consequently became round and detached from the surface of the culture plate. Gefitinib induced the reorganization of actin cytoskeleton and downregulated the expression of p-FAK, integrin β1 and E-cadherin, which are important in cell-extracellular matrix adhesion and cell-cell interaction, respectively. Moreover, gefitinib hindered cell reattachment and spreading and suppressed interactions between detached cells in suspension, leading to poly (ADP-ribose) polymerase cleavage, a hallmark of apoptosis. It also induced detachment-induced apoptosis (anoikis) in C33A cells, another cervical cancer cell line. Taken together, these results suggest that gefitinib triggers anoikis in cervical cancer cells. Our findings may serve as a basis for broadening the range of anticancer drugs used to treat cervical cancer.

Oral Administration of Bifidobacterium lactis Ameliorates Cognitive Deficits in Mice Intracerebroventricularly Administered Amyloid Beta via Regulation the Activation of Mitogen-activated Protein Kinases

  • Jong Kyu Choi;Oh Yun Kwon;Seung Ho Lee
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.607-619
    • /
    • 2024
  • Probiotics are functional microorganisms that exhibit various biological activities, such as allergic reactions, inflammation, and aging. The aim of this study is to evaluate the effects of Bifidobacterium lactis CBT BL3 (BL) on the amyloid beta (Aβ)-mediated cognitive impairments. Oral administration of live BL to intracerebroventricularly Aβ-injected mice significantly attenuated short- and long-term memory loss estimated using the Y-maze and Morris water maze tests. We found that expression of apoptosisrelated proteins such as caspase-9, caspase-3, and cleaved poly (ADP-ribose) polymerase was significantly elevated in the brain tissues of Aβ-injected mouse brains when compared to that of the control mouse group. Interestingly, these expression levels were significantly decreased in the brain tissue of mice fed BL for 6 wk. In addition, the abnormal over-phosphorylation of mitogen-activated protein kinases (MAPKs) such as ERK1/2, p38 MAPK, and JNK in the brain tissue of intracerebroventricularly Aβ-injected mice was significantly attenuated by oral administration of BL. Taken together, the results indicate that Aβ-induced cognitive impairment may be ameliorated by the oral administration of BL by controlling the activation of MAPKs/apoptosis in the brain. This study strongly suggests that BL can be developed as a functional probiotic to attenuate Aβ-mediated cognitive deficits.

Crataegus pinnatifida Bunge root extract induces apoptosis of murine lung carcinoma cells in vitro

  • Minjeong Kwon;Jongbeom Chae;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.299-304
    • /
    • 2023
  • This study sought to evaluate the anticancer effects of Crataegus pinnatifida Bunge root extract (CPE) on murine Lewis lung carcinoma cells (LLC1) in vitro. CPE treatment (2.5, 5, 10 ㎍/mL, 24 h) of LLC cells led to a dose-dependent decrease in cell viability, while CPE treatment did not have a cytotoxic effect on non-cancer cells (NIH/3T3). CPE affects LLC by flipping the plasma membrane and making the membrane more permeable; by flow cytometry, CPE-induced annexin V and propidium iodide positivity, indicating induction of apoptosis in LLC cells. In addition, CPE enhanced the expression of apoptotic proteins caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1). CPE upregulated the proapoptotic protein BCL-2-associated X while downregulating the anti-apoptotic protein B-cell lymphoma 2 (BCL-2), suggesting that CPE induces apoptosis via the mitochondrial pathway. Furthermore, CPE upregulated the phosphorylation of the mitogen activated protein kinase p38. In conclusion, the results suggest that CPE has an anticancer effect in LLC cells by inducing apoptosis via p38.

Chondroprotective Effects of Cinnamomum cassia Blume in a Rat Model of Osteoarthritis (골관절염 랫드 모델에서 계피의 연골보호 효과)

  • Kim, Myoung Hwan;Kang, Seong Soo;Kim, Gonhyung;Choi, Seok Hwa
    • Journal of Veterinary Clinics
    • /
    • v.30 no.3
    • /
    • pp.159-165
    • /
    • 2013
  • The present study was conducted to evaluate the efficacy of Cinnamomum cassia Blume (CC) extract on the repair of damaged cartilage in a rat model of osteoarthritis (OA) by anterior cruciate ligament transection (ACLT) and medial meniscus resection (MMx). Forty-eight rats were assigned to six groups (n = 8 per group): sham as negative control (NC), positive control (PC), diclofenac sodium (DS, 2 mg/kg), CC 25 mg/kg, CC 50 mg/kg and CC 100 mg/kg groups. Treatments were 12 weeks from 7 days after ACLT + MMx. Loss of cartilage and joint instability were significantly reduced in response to treatment with CC or DS compared to the PC (p < 0.05). CC significantly ameliorated cartilage degradation in a dose-dependent manner as assessed by histological findings (p < 0.01). A reduction in the severity of structural changes and a dose-dependent increase in Safranin-O staining intensity were observed in CC treatments, indicating that cartilage degradation was inhibited. Although DS did not affect the increase in active caspase-3 and cleaved poly(ADP-ribose) polymerase-induced apoptosis during the progression of OA, cells reactive to these apoptotic markers were decreased significantly by CC (p < 0.05). However, treatments with CC or DS did not influence the uptake of 5-bromo-2'-deoxyuridine. The findings suggest that CC can exert a chondroprotective action on OA through anti-inflammatory and anti-apoptotic properties.

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.