• Title/Summary/Keyword: Poly(4-vinylpyridine) (P4VP)

Search Result 7, Processing Time 0.019 seconds

Effects of Molecular Weight of Poly(4-vinylpyridine) on the Order-Disorder Transition of Molecular Bottle-brush Composed of Poly(4-vinylpyridine) and 3-Pentadecylphenol (P4VP과 PDP로 이루어진 Molecular Bottle-brush의 Order-Disorder Transition에 미치는 P4VP 분자량의 영향에 관한 연구)

  • 최종렬;조항규;전현애;노시태
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2000
  • Molecular bottle-brush was prepared by hydrogen-bonding between poly(4-vinylpyridine)(P4VP) as main chain and 3-pentadecylphenol (PDP) as amphiphilic side chain. Variation of long period ( $L_{p}$), order-disorder transition temperature ( $T_{ODT}$) and mesomorphic structure of bottle-brush were investigated by changing various mole ratio (x) of pyridine group in P4VP and PDP and molecular weight of P4VP. Upper critical solution temperature (UCST) behaviour was observed. For x 0.8-0.9, maximum critical temperature was found. As molecular weight of P4VP was increased, phase transition occurred at higher temperature. It was found that phase behaviour of the bottle-brush was affected by mobility of P4VP as well as size and regularity of lamellar structure. The $L_{p}$ determined from analysis of crystal structure was in the range of 35 $\AA$ and 40 $\AA$ and was more affected by the molecular weight of P4VP than by mole ratio (x). However, if the molecular weight of P4VP was high, LP value was little affected.ted.d.

  • PDF

Poly(4-vinylpyridine)/Vinyl Acetate-Vinyl Alcohol Copolymer Blends : 9. Phase. Behavior (폴리(4-비닐피리딘)/비닐아세테이트-비닐알코올 공중합체 블렌드 :2. 상 거동)

  • Lee, Joon-Youl;Choi, Dong-Hoon;Lee, Hyeok
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.649-656
    • /
    • 2001
  • Miscibility of poly(4-vinylpyridine) (P4VP) blends with poly(vinyl acetate-co-vinyl alcohol) (VAc-VAL copolymers) was investigated as a function of comonomer composition of VAc-VAL copolymers. Differential scanning calorimetry (DSC) and thermo-optical microscopic (TOM) analysis confirmed that P4VP is miscible with VAc-VAL copolymers containing more than 30 mole% VAL. Fourier transform inflated (FT-IR) spectroscopic analysis revealed that the strong intermolecular hydrongen bonding interaction between the vinylpyridine and VAL hydroxyl group was formed. Theoretical phase diagram was constructed by the calculation using the Association model, a thermodynamic model for hydrogen-bonded polymer blend systems developed by Coleman et al. The calculated theoretical binodal phase diagrams were in good agreement with the experimentally determined cloud point curves.

  • PDF

Synthesis, Characterization and Application of Poly(4-vinylpyridine)-Supported Brønsted Acid as Reusable Catalyst for Acetylation Reaction

  • Borah, Kalyan Jyoti;Dutta, Papia;Borah, Ruli
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.225-228
    • /
    • 2011
  • Poly(4-vinylpyridine)-supported $Br{\phi}nsted$ acids (P4VP-HX) were prepared by wet impregnation technique. These supported acids were found as efficient heterogeneous green catalysts for acetylation of alcohol, amine and phenol with different catalytic activities. The wide application of P4VP-HX as reusable solid acid catalyst in organic reactions is possible because of its simple preparation and handling, stability, simple work up procedure.

Application of AuNPs immobilized on UV Cross-linked P4VP Thin Film as pH Nanosensors (pH 나노센서로의 응용을 위한 UV-가교 P4VP 박막에 고정한 금 나노입자의 특성)

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1010-1018
    • /
    • 2008
  • In this report, we describe the use of gold nanoparticles (AuNPs) immobilized on pH. responsive, cross-linked poly(4-vinylpyridine) (P4VP) thin films, as a potential application for pH nanosensors. The methodology is based on the variation in surface plasmon resonance of immobilized AuNPs with changing the interparticle distances, caused by the swelling/deswelling of the pH responsive P4VP polymer films. The change in optical properties of the immobilized AuNPs in response to the pH of surrounding media was investigated by a simple yet powerful tool; UV-vis absorption spectroscopy. The swelling of the P4VP chains at pH 2 causes an increase in the interparticle distances of immobilized AUNPS ($\sim20nm$) and hence leads to a blue shift of 48 nm in their surface plasmon resonance band peak. On the other hand, when the surrounding media was altered from pH 2 to 10, a red shift of absorption maxima was observed. The changes were rapid, and the effect was reversible. This system could prove to be useful in fabricating nanosensors for detecting the pH or pH changes of surrounding aqueous medium.

Effect of Foreign Molecules on the SERS of Probe Molecules Trapped in Gaps between Planar Ag and Nano-sized Ag Particles

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Kuan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.793-800
    • /
    • 2013
  • A few years ago, the plasmon-induced electronic coupling (PIEC) model was proposed in the literature to explain small changes in the surface-enhanced Raman scattering (SERS) in nanogap systems. If this model is correct, it will be very helpful in both basic and application fields. In light of this, we carefully reexamined its appropriateness. Poly(4-vinylpyridine) (P4VP) used in the earlier work was, however, never a proper layer, since most adsorbates not only adsorbed onto Ag nanoparticles sitting on P4VP but also penetrated into the P4VP layer deposited initially onto a flat Ag substrate, ultimately ending up in the SERS hot sites. Using 1,4-phenylenediisocyanide and 4-nitrophenol as the affixing layer and the foreign adsorbate, respectively, we could clearly reveal that the PIEC model is not suited for explaining the Raman signal in a nanogap system. Most of the Raman signal must have arisen from molecules situated at the gap center.

A Facile Method for Micropatterning of Gold Nanoparticles Immobilized on UV Cross-linked Polymer Thin Films

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • This report demonstrates the immobilization of uniformly sized gold nanoparticles (AuNPs) on UV cross-linked poly(4-vinylpyridine) (P4VP) polymer thin films and the preparation of micropatterned structures of AuNPs on these films. The polymer thin films were prepared by a spin-coating of P4VP onto a cleaned silicon wafer surface. Upon UV irradiation, these films were then photo cross-linked. Gold nanoparticles were immobilized by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. The morphology of the films and the immobilization of AuNPs were studied by atomic force microscopy (AFM) and UV-visible spectroscopic techniques. The micropatterned gold structures that were produced on the polymer surface are delineated by combining with the photolithographic method. While untreated and simply spin coated films were physisorbed and unstable that could be easily removed by rinsing with a solvent, the cross-linked and AuNPs immobilized P4VP films were found to be highly stable even after repeated solvent extractions.

Fabrication of Polymer Thin Films on Solid Substrates (고체 기판에 고분자 박막의 고정화)

  • Kim, Min Sung;Jeong, Yeon Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.200-204
    • /
    • 2010
  • Surface properties are important for determining the functions and uses of materials. So modification of materials with polymer thin films has emerged as an important method to control the physical and chemical properties of the surface layer. We report a simple and effective method to photochemically attach thin polymeric layers to solid surface without chemical derivatization of the substrate and/or the polymer. The system is based on a photoreactive poly(4-vinylpyridine) (P4VP) thin film which is formed on the $SiO_{2}$ surface via spin coating. This substrate is then covered with another polymer film that is reacted with the benzyl radical moieties by UV irradiation. As a result of photochemical reaction, a thin layer of the later polymer is covalently bound to the surface of P4VP. Unbounded polymer is removed by sonication. The thickness of the attached film is a function of the irradiation time and the molecular weight of the polymer. Spatially defined polymer thin films can be fabricated by way of photolithography.