• 제목/요약/키워드: Polo-like kinase 1 (Plk1)

검색결과 10건 처리시간 0.021초

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

Polo-Like Kinases (Plks), a Key Regulator of Cell Cycle and New Potential Target for Cancer Therapy

  • Lee, Su-Yeon;Jang, Chuljoon;Lee, Kyung-Ah
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권1호
    • /
    • pp.65-71
    • /
    • 2014
  • Cell cycle process is regulated by a number of protein kinases and among them, serine/threonine kinases carry phosphate group from ATP to substrates. The most important three kinase families are Cyclin-dependent kinase (Cdk), Polo-like kinase (Plk), and Aurora kinase. Polo-like kinase family consists of 5 members (Plk1-Plk5) and they are involved in multiple functions in eukaryotic cell division. It regulates a variety of aspects such as, centrosome maturation, checkpoint recovery, spindle assembly, cytokinesis, apoptosis and many other features. Recently, it has been reported that Plks are related to tumor development and over-expressed in many kinds of tumor cells. When injected the anti-Plk antibody into human cells, the cells show aneuploidy, and if inhibit Plks, most of the mitotic cell division does not proceed properly. For that reasons, many inhibitors of Plk have been recently emerged as new target for remedy of the cancer therapeutic research. In this paper, we reviewed briefly the characteristics of Plk families and how Plks work in regulating cell cycles and cancer formation, and the possibilities of Plks as target for cancer therapy.

Development of radiotracer for polo-box domain of polo-like kinase 1

  • Ryu, Eun Kyoung
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.152-157
    • /
    • 2019
  • Polo-like kinase 1 (Plk1) is crucial regulator of cell cycle progression during mitosis. It is known to highly overexpress in many different tumor types, and has been implicated as a potential antimitotic cancer target. The phosphopeptide, Pro-Leu-His-Ser-p-Thr (PLHSpT), was shown a high level of affinity and specificity for the polo-box domain (PBD) of Plk1. However, the peptide has the limitation of cell permeability. We designed the derivatives to enhance the limitation of PLHSpT using drug delivery system. In addition, we synthesized and evaluated its radiotracer for tumor diagnosis. This review discusses the derivative and radiotracer that are suitable for tumor treatment and diagnosis for PBD of Plk1.

비소세포 폐암에서 Cyclooxygenase-2와 Polo-like Kinase-1의 상관관계 (Relation between Cyclooxygenase-2 and Polo-like Kinase-1 in Non-Small Cell Lung Cancer)

  • 이규화;양석철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권4호
    • /
    • pp.303-310
    • /
    • 2009
  • Background: Elevated expression of cyclooxygenase-2 (COX-2) and Polo-like kinase-1 (PLK-1) is observed in a wide variety of cancers. Augmented expression of COX-2 and enhanced production of prostaglandin $E_2(PGE_2)$ are associated with increased tumor cell survival and malignancy; COX-2 has been implicated in the control of human non-small cell lung carcinoma (NSCLC) cell growth. PLK-1 siRNA induced the cell death of lung cancer cells and the systemic administration of PLK-1 siRNA/atelocollagen complex inhibited the growth of lung cancer in a liver metastatic murine model. COX-2 and PLK-1 are involved in proliferation and in cell cycle regulation, and there is a significant correlation between their interaction in prostate carcinoma. Methods: In this study, we investigated the pattern of COX-2 and PLK-1 expression in NSCLC, after treatment with IL-1$\beta$, COX-2 inhibitor and PLK-1 siRNA. Results: Expression of PLK-1 was decreased in A549 COX-2 sense cells, and was increased in A549 COX-2 anti-sense cells. Knock out of PLK-1 expression by PLK-1 siRNA augmented COX-2 expression in A549 and NCl-H157 cells. When A549 and NCI-H157 cells were treated with COX-2 inhibitor on a dose-dependent basis, PLK-1 and COX-2 were reduced. However, when the expression of COX-2 was induced by IL-1$\beta$, the production of PLK-1 decreased. Conclusion: These results demonstrate that COX-2 and PLK-1 are regulated and inhibited by each other in NSCLC, and suggest that these proteins have a reverse relationship in NSCLC.

Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In vivo-fertilized Murine Embryos

  • Moon, Jeonghyeon;Roh, Sangho
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.229-235
    • /
    • 2018
  • Polo-like kinase 1 (Plk1) has been known to be a critical element in cell division including centrosome maturation, cytokinesis and spindle formation in somatic, cancer, and mammalian embryonic cells. In particular, Plk1 is highly expressed in cancer cells. Plk1 inhibitors, such as BI2536, have been widely used to prevent cell division as an anticancer drug. In this study, the fertilized murine oocytes were treated with BI2536 for 30 min after recovery from the oviduct to investigate the effect of down-regulation of Plk1 in the in vivo-fertilized murine embryos. Then, the localization and expression of Plk1 was observed by immunofluorescence staining. The sperm which had entered into the oocyte cytoplasm did not form male pronuclei in BI2536-treated oocytes. The BI2536-treated oocytes showed significantly lower expression of Plk1 than non-treated control group. In addition, alpha-tubulin and Plk1 gathered around sperm head in non-treated oocytes, while BI2536-treated oocytes did not show this phenomenon. The present study demonstrates that the Plk1 inhibitor, BI2536, hinders fertilization by inhibiting the formation of murine male pronucleus.

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon;Jang, Young-Joo
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.709-716
    • /
    • 2006
  • Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance

  • Lee, Kyung S.;Park, Jung-Eun;Kang, Young Hwi;Kim, Tae-Sung;Bang, Jeong K.
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.286-294
    • /
    • 2014
  • Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key regulator of various cell cycle events that are critical for proper M-phase progression. The polobox domain (PBD) present in Plk1's C-terminal noncatalytic region has been shown to play a central role in targeting the N-terminal kinase domain of Plk1 to specific subcellular locations. Subsequent studies reveal that PBD binds to a phosphorylated motif generated by one of the two mechanisms - self-priming by Plk1 itself or non-self-priming by a Pro-directed kinase, such as Cdc2. Here, we comparatively review the differences in the biochemical steps of these mechanisms and discuss their physiological significance. Considering the diverse functions of Plk1 during the cell cycle, a better understanding of how the catalytic activity of Plk1 functions in concert with its cisacting PBD and how this coordinated process is intricately regulated to promote Plk1 functions will be important for providing new insights into different mechanisms underlying various Plk1-mediated biological events that occur at the multiple stages of the cell cycle.

Polo-like kinase-1 in DNA damage response

  • Hyun, Sun-Yi;Hwan, Hyo-In;Jang, Young-Joo
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.249-255
    • /
    • 2014
  • Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.

Inhibition of DNMT3B and PI3K/AKT/mTOR and ERK Pathways as a Novel Mechanism of Volasertib on Hypomethylating Agent-Resistant Cells

  • Eun-Ji Choi;Bon-Kwan Koo;Eun-Hye Hur;Ju Hyun Moon;Ji Yun Kim;Han-Seung Park;Yunsuk Choi;Kyoo-Hyung Lee;Jung-Hee Lee;Eun Kyung Choi;Je-Hwan Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.319-329
    • /
    • 2023
  • Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

Chk2 Regulates Cell Cycle Progression during Mouse Oocyte Maturation and Early Embryo Development

  • Dai, Xiao-Xin;Duan, Xing;Liu, Hong-Lin;Cui, Xiang-Shun;Kim, Nam-Hyung;Sun, Shao-Chen
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.126-132
    • /
    • 2014
  • As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein ${\gamma}$-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.