• Title/Summary/Keyword: Pollution flow

Search Result 811, Processing Time 0.025 seconds

Patterns on Sewer Transfer Flow for Rain Weather Period in the Area with Combined Sewer System for the Management of TMDLs (수질오염총량관리 합류식지역의 우기시 관거이송 변화유형)

  • Park, Jun Dae;Oh, Seung Young;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2010
  • Discharged pollution load is varied as rainfall changes in the area with combined sewer system. Changes in discharged pollution load are directly related with those of sewer transfer flow. Therefore, it is important to identify the pattern of sewer transfer flow for the analysis of changes in discharged pollution load. This study reviewed the type of distribution of sewer transfer flow for 17 sewage treatment plants and developed simple formular to estimate sewer transfer flow as rainfall changes. 11 facilities showed to have some relation with rainfall in the change of sewer transfer flow but 6 facilities to have no relation. Relationships between rainfall amount and sewer transfer flow showed that 6 facilities out of 11 had relatively strong relationships above R2=0.5, which were considered to be affected directly by rainfall changes. The formular which explain the relationship between rainfall and sewer transfer flow can be applied in the analysis of rainfall effects on discharged pollution load, therefore, the more appropriate evaluation will be done.

Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve (유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정)

  • Kim, Dong Young;Yoon, Chun Gyeong;Rhee, Han Pil;Choi, Jae Ho;Hwang, Ha Sun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

Optimal Sizing of Intercepting Flow for Reducing Pollution Loads Caused by CSOs (CSOs 저감을 위한 차집관거 최적화 시스템)

  • Kong, Min-Keun;Bae, Ki-Hyun;Kang, Woo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.418-424
    • /
    • 2004
  • An abrupt high pollution loads in combined sewer systems is believed to be caused by first flushing actions and the resuspension of sediments deposited in sewers. Therefore, pollution loads in each flow regulator have a different tendency. This systems control intercepting flow in each flow regulator using water quality and water level. A desired quantity of intercepting flow was adjusted and the necessary slide position for a constant intercepting is calculated by Optimization programming. This systems make it possible to reduce pollution loads caused by CSOs to water body, may be alternative for the stable operation of STP through improving water quality to STP.

A Study on the Out Flow Characteristics of Non-Point Source Pollution in the Branch River of So-yang Lake (소양호 지류하천의 비점오염원 유출특성에 관한 연구)

  • Choi, Han-Kuy;Choi, Chang-Ho;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.199-205
    • /
    • 2009
  • This study selected Naerin Stream, Inbuk Stream and Buk Stream, branch rivers of Soyang Dam, also area of highland agriculture as test sites and measured flow and water quality, particularly eutrophication factors (BOD, COD, T-N, and T-P) in precipitation season and non precipitation season for a year, 2008. Based on the result, the study examined the change in water quality in relation to flow, and created flow discharged - pollution loads regression line by estimating pollution loads flowed from each branch river. And the study calculated annual pollution discharge loads for unit area and proposed regression equation on it by using regression analysis.

  • PDF

Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow (수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비)

  • Park, Jundae;Park, Juhyun;Rhew, Doughee;Jeong, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed - Analysis of Pollution Load Budget in Watershed - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(I) -오염부하 물질수지 분석-)

  • Lee, Doojin;Kim, Juwhan;Woo, Hyungmin;Ahn, Hyowon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.547-556
    • /
    • 2005
  • The objective of this study is to obtain adequate intercepting flow during wet weather conditions in combined sewer system. Two study sites are selected under considering different population density, one is developed area with heavy urbanization. Another is recently developing area. In the analysis of field investigation, SS was most significant in initial flushing effects compared with other factors and showed the result with the order of COD, TP, TN. As compared with event mean concentration(EMC) of runoff, BOD, TN and TP showed high concentrations in wide area with relatively large population density. It is by the reason that much pollution load was discharged to receiving water from urbanized area during wet period. According to results of storm-water modeling, 53% of total COD and 52% of total SS pollution load were discharged to receiving water by overflow than intercepting capacity in middle population density site. Also, in the urbanized area, pollution load was discharged to receiving water by 49% of total COD and 77% of total SS. These results can be applied to setup for pollution load flow(budget) generation, collection, treatment and discharging in order to obtain adequate intercepting flow.

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

A Study on the Suggestions for Standard Flow Conditions considering the Variation of Stream Flow and Water Quality for the Management of Total Maximum Daily Loads (하천 유량.수질변화 특성을 고려한 수질오염총량관리 기준유량 조건에 관한 연구)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.426-435
    • /
    • 2012
  • The variation of stream flow is the one of the most important factors which influence on that of water quality in the unit watershed. The target water quality goal is established and permissible load is allotted in the base of the standard flow condition along with its water quality for the management of Total Maximum Daily Loads (TMDLs). A standard flow selected could cause problems in the load allotment if it was not properly arranged. This study reviewed the acquisition of water quality data, the self-variation and the retainability in water quality on the specific flow conditions. This study also proposed the median and the adjusted average flow condition out of general flow conditions as alternative standard flow conditions. It is considered that the alternatives can make the water quality data easily acquired and the water quality representativeness more enhanced on the standard flow conditions.

Optimum Flow and Pollution Load Monitoring Time of Combined Sewers of Urban Watersheds during Dry Weather (비강우시 도시 합류식 하수도의 오염부하 산정을 위한 최적관측시간 산정연구)

  • Choi, Yong-Hun;Won, Chul-Hee;Park, Woon-Ji;Seo, Ji-Yeon;Shin, Min-Hwan;Lee, Chan-Ki;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • Flow and pollution load were monitored at 2 combined sewer outlets (C-1 and C-2) of urban watersheds during dry weather from September, 2004 to April, 2006 for 20 months. The objectives were to investigate the diurnal variation of flow and pollutant load and to find the proper sampling time that could measure representative flow and pollutant load. Pollution load closed to the average daily load at C-1 could be measured at 00:00 hour and by the mean of 15:00 and 18:00 hour measures, and 15:00 and 21:00 hour measures, respectively. In addition at C-2, it was 21:00 hour and the mean of 15:00 and 18:00 hour measures. This study concluded that arbitrary sampling of flow and water quality could cause large errors in the estimation of urban pollution load and recommended that urban combined sewers should be monitored when flow and water quality showed daily average and concentration.