• 제목/요약/키워드: Pollution Emission Control Policy

검색결과 22건 처리시간 0.023초

대기오염 배출량 변화의 경제적 요인 분해 (An Economic Factor Analysis of Air Pollutants Emission Using Index Decomposition Methods)

  • 박대문;김기흥
    • 자원ㆍ환경경제연구
    • /
    • 제14권1호
    • /
    • pp.167-199
    • /
    • 2005
  • 본 논문의 분석결과는 다음과 같다. 첫째, 환경부가 1991년부터 매년 조사, 발표하고 있는 "대기오염물질배출량"은 난방, 산업, 수송 및 발전의 4부문으로 분류되어 있어 자료의 활용가치가 매우 낮아 조사 통계 내용의 다양화 및 산업분류기준이 개선되어야 한다. 둘째, 대기오염 대량배출산업은 석탄 석유(s7), 전력 가스(s17), 운송 보관(s20) 산업이다. 이들 산업에 대한 기존의 대기규제정책은 다른 산업에 비해 비효율적이었다고 볼 수 있으며 향후 대기정책에서도 유념하여야 할 사항으로 여겨진다. 셋째, 시멘트 석회 석제(s10), 전력 가스(s17) 산업은 대량의 오염배출산업인 동시에 배출 유발효과도 상대적으로 가장 큰 산업이다. 넷째, 배출량 변화의 가장 큰 감소요인은 배출계수의 변화(${\Delta}f$)이며, 가장 큰 증가요인은 경제성장 효과(${\Delta}y$)였다. 생산 또는 투입기술의 변화(${\Delta}D$), 수요구조의 변화(${\Delta}u$)는 배출량 증감에 미치는 영향이 산업별로 다르게 나타났으나 그 영향은 미미하였다. 다섯째, 대기오염 총량관리제 도입, 고(高)오염산업의 차별관리 및 환경과 경제의 상생을 위한 대기정책의 효율적 시행을 위해서는 산업별 배출량 기본자료의 산정 방법 개선 및 경제적 분석과 평가 기준의 활용, 확대가 필요하다. 여섯째, 1990년대 한국의 경제성장은 1960~1970년대와 같이 배리 코머너 가설에 상응한 오염지향적 경제성장은 아니었으나 산업 전체의 기술 및 수요구조가 환경친화적이라 할 수도 없었다. 이것은 대기환경 개선을 위한 환경정책이 오직 환경당국의 환경정책수단에만 의존했을 뿐이며 국가경제 전체의 산업구조나 친환경 생산기술의 발전 등 범정부적 차원의 환경정책이 병행되지 못했음을 시사한다.

  • PDF

노천소각에서 배출되는 먼지 배출계수 산정에 관한 연구 (Estimation of Particulate Matter Emission Factors from Open Burning)

  • 정노을;조명란;허선화;김형천;박정민;이대균;홍지형;이석조;이영재
    • 한국대기환경학회지
    • /
    • 제28권3호
    • /
    • pp.348-356
    • /
    • 2012
  • It is very important to investigate air pollutants and emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S. EPA and investigated concentrations of TSP, PM10, PM2.5 from woods and household wastes burning to calculate emission factors and build emission inventories. The results of experiment with 15 kg of woods and 3 kg of household wastes using the incineration simulator were as follows: in case of woods burning, TSP concentration was $66.4mg/m^3$, PM10 concentration was $28.4mg/m^3$, PM2.5 concentration was $17.9mg/m^3$, respectively; in case of household wastes burning, TSP concentration was $118.4mg/m^3$, PM10 concentration was $66.8mg/m^3$, PM2.5 concentration was $55.2mg/m^3$, respectively. Concentrations from household burning, as stated above, were higher than those from woods burning. Emission factors (EFs) for woods and household wastes burning were calculated as 2.45 and 6.75 g/kg for TSP, 0.86 and 5.45 g/kg for PM10, 0.78 and 4.81 g/kg for PM2.5, respectively. EFs of TSP, PM10, PM2.5 calculated from household wastes burning were higher than those of woods burning. When we added PM emissions from woods burning and household wastes burning to Korean National Emission Inventory named as Clean Air Policy Support System (CAPSS), CAPSS annual emissions of TSP, PM10, PM2.5 were increased by 0.08~0.26% (An increase rate for TSP, PM10, PM2.5 were 0.08~0.10%, 0.16~0.20% and 0.18~0.26%, respectively). Note that we assumed that the 1% of household wastes is emitted by open burning.

중국 초미세먼지 현황 및 정책 동향 (Review on the Current Status and Policy on PM2.5 in China)

  • 문광주;채혁기;전권호;;;김대곤;박현주;김정수
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.373-392
    • /
    • 2018
  • The emission of air pollutants in China has increased rapidly as its economy expanded over the last decades. The Chinese government has recently acknowledged the seriousness of the resulting air pollution and is trying to improve air quality in many ways. Here, we review the air quality control and management policies in China, one of our closest neighbors, because these policies may also influence the air quality in Korea. This study examined the recent policies on $PM_{2.5}$ reduction and analyzed the variation in air quality and air pollutant emissions in China. The ambient air quality and emission standards in China have been strengthened, based on China's Air Pollution Prevention and Control Action Plan of 2013. As a result, the annual mean concentration of $PM_{2.5}$ in 2015 in 74 large Chinese cities declined by 23.6% compared with 2013 values. Coal consumption in China also has been reduced by more than 10% per year since 2013. Furthermore, the laws controlling atmospheric emissions were revised again in 2016, and an air pollution forecasting and warning system was implemented to help manage air pollution problems. At present, the Chinese government is trying to evaluate its policies on $PM_{2.5}$ and find a new paradigm to mitigate ongoing $PM_{2.5}$ pollution. In this context, a joint study between Korea and China has been initiated to investigate the characteristics and sources of ambient $PM_{2.5}$ and to identify factors contributing to the high $PM_{2.5}$ concentrations in northeast China. We expect that this academic collaboration will benefit both countries in their search for new policies for $PM_{2.5}$ reduction.

Key air pollution problems in the early 21st century

  • Brlmblecombe, Peter
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.5-10
    • /
    • 2003
  • This paper explores not only emerging scientific problems but also the difficulties communicating air quality issues into an increasingly sensitive the public and policy arena. The public understanding and trust in air pollution information and indices may be very different to the notions of validity or accuracy that are important for a scientist. We operate in a world where openness requires us to reveal both the difficulties and disagreements in our understanding of the polluted atmosphere. Yet this can be confusing and increase complexity in situations where clear political and social decisions are required. I am going to examine these issues, starting with questions of what substances we regard as pollutants and the difficulties of getting the correct balance of concern given the broadening the base of chemicals emitted to the environment. There are also questions of exposure particularly in terms of vulnerable populations, who may spend large amounts of time indoors, where air is rarely monitored. In contemporary society there are pollution problems that extend far beyond urban areas and we have to consider regional issues such as windblown dusts, smoke from forest fires along with issues of the emission of green house gases and ozone depleting substances. Finally I will discuss the issues of communicating with a concerned public and sceptical politicians and the troubling interface between technological and sociological control. Such complexity is often missed in a maze of seemingly stronger political and social needs.

  • PDF

화력발전소에서의 국내 배출계수 산정 방안 연구 -먼지를 중심으로- (Estimating PM Emission Factor from Coal-Fired Power Plants in Korea)

  • 장기원;김형천;이용미;송덕종;정노을;김상균;홍지형;이석조;한종수
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.485-493
    • /
    • 2011
  • In Korea, PM (Particulate Matter) emissions caused by coal-fired power plants are measured by a system, so called Clean Air Policy Support System (CAPSS), which uses foreign emission factors. However, the system fails to reflect the characteristics of domestic power plants. In this regard, this study aims to develop local, accurate domestic emission factors. The study measured the amount of TSP (Total Suspended Particulates), PM10 and PM2.5 by collecting samples from the latter parts of pollution control devices which were installed at 3 bituminous-fired power plants and 3 anthracite-fired power plants. The results showed that the average concentrations of TSP, PM10 and PM2.5 measured at bituminous-fired power plants were 4.63 mg/$Sm^3$, 2.96 mg/$Sm^3$ and 3.07 mg/$Sm^3$ respectively, much higher than those from anthracite-fired power plants (2.96 mg/$Sm^3$, 2.47 mg/$Sm^3$ and 1.37 mg/$Sm^3$, respectively). In addition, bituminous-fired power plants showed higher ratios of PM10/TSP and PM2.5/TSP with 0.66 and 0.92, respectively, compared to 0.82 and 0.46, the ratios of PM10/TSP and PM2.5/TSP measured in anthracite-fired power plants. Emission factors based-on concentration measurements were also higher for bituminous-fired power plants, and PM with smaller particles tended to have bigger difference in emission factors between the two fuels. This study calculated the amount of PM emissions by using the estimated emission factors. When it comes to the PM emissions, it was less than that of CAPSS while similar to that of CleanSYS in its amount. It is expected that the emission factors developed by this study will be used in Korea replacing foreign emission factors currently used in Korea by ensuring the objectivity and reliability as domestic emission factors.

울산 지역에서 2001년 이후 이산화황(SO2)의 고농도 사례 분석과 저감 정책 방안의 검토 (Case Analysis on High Concentration of SO2 and Review on Its Reduction Policy in the Ulsan Metropolitan Area since 2001)

  • 문윤섭
    • 한국환경과학회지
    • /
    • 제17권4호
    • /
    • pp.423-437
    • /
    • 2008
  • Until comparatively lately, the annual time series of the $SO_2$ concentration had been shown in a decreasing trend in Ulsan as well as other Korean cities. However, the high concentration of $SO_2$ was frequently found in the specific countermeasure region including the national industrial complex such as Mipo and Onsan in the Ulsan city for the period of $2001{\sim}2004$. There are many conditions that can influence the high concentration of $SO_2$ at monitoring sites in Ulsan, such as: First, annual usage of the fuel including sulfur increased in comparison with the year before in spite of the fuel conversion policy which wants to use low sulfur oil less than 3% and LNG. Second, point source, such as the power plants and the petroleum and chemistry stacks, was the biggest contributor in $SO_2$ emission, as a analyzed result of both the air quality modeling and the stack tole-monitoring system (TMS) data. And third, the air pollutants that occurred in processes of homing and manufacturing of the fuel including sulfur were transported slow into a special monitoring site by accumulating along the frontal area of see-breeze. It was concluded that Ulsan's current environmental policy together with control methods should be changed into the regulation on total amount of emission, including a market-based emission trading with calculating of atmospheric environmental critical loads, for the $SO_2$ reduction like the specific countermeasure for the $O_3$ and PM10 reduction in the Seoul metropolitan area. And this change should be started in the big point sources of $1{\sim}3$ species because they are big contributors of Ulsan's $SO_2$ pollution. Especially it is necessary to revitalize of the self-regulation environmental management. Other control methods for sustaining the $SO_2$ reduction are as follows: maintenance of the fuel conversion policy, reinforcement of the regional stationary source emission standard, and enlargement of the stack TMS.

중국 대기오염물질 배출의 시공간적 변화 분석 (Analysis of Regional and Inter-annual Changes of Air Pollutants Emissions in China)

  • 우정헌;부찬종;김진수;김영성;김윤하
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.87-100
    • /
    • 2018
  • Fast economic growth and urbanization of China have been causing air pollution not only over its domestic but transboundary atmosphere. Recent high fine particle pollution episodes in China made the government move toward more stringent air pollution control policies - which are mostly fuel switching and emissions control. In this research, we tried to understand characteristics of Chinese emissions and their change by analyzing its emissions inventory by year, sector, and region. From the inter-comparison of existing bottom-up emission inventories, we found relatively good agreements (<20% difference) for $SO_2$ and $NO_x$, but 30% or more discrepancies for some pollutants. Inter-comparison with top-down $NO_x$ emissions estimates also showed 20~50% differences by year. The regional distribution and inter-annual changes of emissions revealed different stages of energy/fuel mix and policy penetration. Early increase of pollutants emissions in the eastern part of China might give strong influences to the Korean peninsular in early 2000s but, more stringent control in that region would help improving air pollution in Korea in near future.

통합환경관리제도 운영을 위한 최적가용기법 평가·선정기법 연구 (Evaluation and Selection Method of Best Available Techniques for Integrated Environmental Management System)

  • 박재홍
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.348-358
    • /
    • 2017
  • The process of evaluating and selecting the best available techniques presents various characteristics for each country. In the case of EU, BAT is selected through TWG meeting after first screening, mass and energy balance, impact assessment and decision support process. Korea has proposed four principles to select BAT that can be carbon neutral for each environmental infrastructure in order to reduce greenhouse gas emissions. In order to evaluate and select the best available technique, it is necessary to differentiate the method according to whether it is a technique generally applied at the current workplace, whether it is a single technique or a combination technique, and whether it is a technology technique or management technique. In the case of a single technique, it should be evaluated whether it is a technique applied in the workplace, excessive cost, superior environmental technique over BAT, and secondary environmental pollution. In the case of multiple techniques, it is necessary to examine whether the emission standards are met and whether the pollutants can be treated at the same level as BAT. In the case of BAT candidates for management techniques, whether or not they contribute directly or indirectly to lowering the emission level of pollutants can be an important evaluation item. In the case of environmental techniques that are not generally applied in the workplace, it is recommended that the following 8 steps be carried out, including those prescribed by law. In the first stage, the list of performance evaluation factors is listed. In the second stage, the level of disposal of pollutants and the level of satisfaction with standards are listed. In the third stage, the environmental evaluation elements are listed. In the fourth stage, Is to list the economic evaluation elements, step 6 is to list the pollution and accident prevention evaluation factors, step 7 is the quantitative evaluation of the technical working group, and step 8 is BAT confirmation through deliberation of the central environmental policy committee.

대구지역 대기오염자동측정망 위치의 타당성 분석 (Feasibility Study for the Location of Air Quality Monitoring Network in Daegu Area)

  • 최성우;이중범
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.81-91
    • /
    • 2011
  • Air quality monitoring networks are very important facilities to manage urban air pollution control and to set up an environmental policy. Since air quality monitoring network of Daegu was allocated from 1980s to mid-90s, there is need to reevaluate it and relocated its site. This study was evaluated the position of Daegu air quality monitoring station by unit environmental sensitivity index, grid emission rate, CAI (Comprehensive Air-quality Index) point. The investigation domain covered an area of 16 $\times$ 24 km centered at the metropolitan area of Daegu with grid spacing of 2 km. The location of alternative air quality monitoring networks was selected through optimization and quintiles analysis of total score. The result showed that all things considered, new air quality monitoring network need to install grid numbers 10, 28, 36, 37, 46. We also recommand three scenarios of alternative air quality monitoring network when considering unit environmental sensitivity index, emission rate and CAI point.

화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구 (A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant)

  • 송영호;김옥;박상현;이진헌
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.