Abstract
In Korea, PM (Particulate Matter) emissions caused by coal-fired power plants are measured by a system, so called Clean Air Policy Support System (CAPSS), which uses foreign emission factors. However, the system fails to reflect the characteristics of domestic power plants. In this regard, this study aims to develop local, accurate domestic emission factors. The study measured the amount of TSP (Total Suspended Particulates), PM10 and PM2.5 by collecting samples from the latter parts of pollution control devices which were installed at 3 bituminous-fired power plants and 3 anthracite-fired power plants. The results showed that the average concentrations of TSP, PM10 and PM2.5 measured at bituminous-fired power plants were 4.63 mg/$Sm^3$, 2.96 mg/$Sm^3$ and 3.07 mg/$Sm^3$ respectively, much higher than those from anthracite-fired power plants (2.96 mg/$Sm^3$, 2.47 mg/$Sm^3$ and 1.37 mg/$Sm^3$, respectively). In addition, bituminous-fired power plants showed higher ratios of PM10/TSP and PM2.5/TSP with 0.66 and 0.92, respectively, compared to 0.82 and 0.46, the ratios of PM10/TSP and PM2.5/TSP measured in anthracite-fired power plants. Emission factors based-on concentration measurements were also higher for bituminous-fired power plants, and PM with smaller particles tended to have bigger difference in emission factors between the two fuels. This study calculated the amount of PM emissions by using the estimated emission factors. When it comes to the PM emissions, it was less than that of CAPSS while similar to that of CleanSYS in its amount. It is expected that the emission factors developed by this study will be used in Korea replacing foreign emission factors currently used in Korea by ensuring the objectivity and reliability as domestic emission factors.