• Title/Summary/Keyword: Polarization mode dispersion

Search Result 34, Processing Time 0.021 seconds

Proposal and Analysis of Wavelength-Switchable Optical Fiber Filter Based on a Solc Type

  • Kim, Min-Wook;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.147-151
    • /
    • 2008
  • This paper proposes a new polarization-independent Sagnac birefringence loop structure-based multiwavelength-periodic filter and presents measurements and analysis of its spectrum. The filter can be used in several schemes by adjusting the orientation angles of two quarter waveplates and the operating characteristics in the reflection type are analyzed including dispersion and polarization mode dispersion at each principal axis. This filter has polarization-independent spectra but a polarization-dependent dispersion, consequently polarization mode dispersion whose values changes with operating schemes.

Effect of Chirp on Polarization Mode Dispersion and Polarization-Dependent Loss (PMD와 PDL에 미치는 chirp의 영향)

  • Yoon, Il-Yong;Lee, Yong-Wook;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1939-1940
    • /
    • 2002
  • Numerical simulation for effect of chirp on PMD and PDL was accomplished. we assumed two uniform fiber concatenation with both polarization mode dispersion and polarization-dependent loss. We showed that polarization mode dispersion is increased with chirp parameter and polarization-dependent loss is decreased with chirp. And we accomplished mathematical analysis.

  • PDF

A Study of PMD Characteristic in Single Mode Optical Fiber (단일모드 광섬유에서의 편광모드분산 특성에 관한 연구)

  • 이청학;김성탁;김기대;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.201-204
    • /
    • 1999
  • Polarization mode dispersion (PMD) restrict the bend-width of single mode optical filer, and it is important parameter in the optical fiber having long-length. Although fiber has perfect circular symmetry, fiber bending, twisting and laws governing manufacture cause additional Polarization mode dispersion. The effect of polarization mode dispersion in general single mode fiber of long length is discussed in this paper. Measurement of PMD with random mode coupling were conducted in two kind of fibers using different laws governing manufacture and interferometric method.

  • PDF

Derivation of the Foschini and Shepp's Joint-Characteristic Function for the First-and Second-Order Polarization-Mode-Dispersion Vectors Using the Fokker-Planck Method

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.240-243
    • /
    • 2008
  • Using the well-known Fokker-Planck method, this paper presents a standard way to find the joint-characteristic function for the first- and second-order polarization-mode-dispersion vectors originally derived by Foschini and Shepp. Compared with the Foschini and Shepp's approach, the Fokker-Planck approach gives a more accurate and straightforward way to find the joint-characteristic function.

Non-data Aided Timing Phase Recovery Scheme for Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion

  • Park, Jang-Woo;Chung, Won-Zoo;Park, Jong-Sun;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.367-372
    • /
    • 2009
  • In this paper we propose an electronic domain timing phase selection scheme for the optical communication systems suffering from inter-symbol-interference (ISI) distortion due to chromatic dispersion (CD) or polarization mode dispersion (PMD). In the presence of CD/PMD a proper timing phase selection is important for discrete time domain equalizers, since different timing phases produce different nonlinear ISI channels of different severity. The proposed timing phase recovery scheme based on dispersion minimization (DM) practically approximates the optimal minimum mean squared error (MMSE) timing phase without training signals which reduces overall throughput substantially, especially in time-varying channels such as PMD. The simulation results show that the proposed DM timing agrees with MMSE timing phase, under proper normalization of the received signals, for various dispersion and OSNR.

PMD Effect on the Clock-based Optimum Dispersion Compensation Monitoring Technique

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.112-115
    • /
    • 2009
  • We investigate the effect of polarization-mode dispersion (PMD) on the optimum dispersion compensation (ODC) monitoring and nonlinear penalty in optical transmission systems. We report that PMD may reduce the fiber nonlinearity. We also report that the monitoring error of the clock-based ODC monitoring technique decreases after the first-order PMD compensation. A simple explanation of this phenomenon is shown.

A Simple Yb-Doped Mode-Locked Fiber Oscillator under Normal Dispersion as a Seed Laser (Seed 레이저용 정상분산 영역에서 발진하는 간단한 구조의 이터븀 기반 모드 잠금 광섬유 레이저)

  • Kim, Byeong Kwon;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.805-811
    • /
    • 2014
  • In this investigation, we constructed and demonstrated a simple Yb-doped fiber laser, of which longitudinal modes are mode-locked without any additional devices to compensate the dispersion caused by optical components. Non-linear polarization rotation (NPR) was adopted for the mode-locking mechanism and a polarization controller (PC) was used for a kind of spectral filters to restrict the bandwidth for mode-locking. As the result, the laser was successfully operated as mode-locked with the repetition rate of 42.2 MHz and the spectrum was broadened up to approximately 16 nm at 1033 nm center wavelength when the laser was mode-locked. In this paper, the operation of the developed Yb-doped mode-locked laser is explained with the concept of Lyot filter realized by a PC, which enables mode-locking under normal dispersion. In the industrial applications, this laser can be used as a seed laser of the high power lasers for optical manufacturing.

A Study on Polarization Mode Dispersion Properties of Concatenated Optical Fibers (이종 접합된 광섬유에 있어서 편광모드분산 특성에 관한 연구)

  • Lee, Cheong-Hak;Ryu, Boo-Hyung;Kim, Kee-Dae;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2456-2458
    • /
    • 1999
  • The polarization mode dispersion (PMD) that restricts the transmission bandwidth was investigated in standard long single mode fiber which optimized at 1.3${\mu}m$. Although fiber has perfect circular symmetry, each optical fiber has different refractive index profiles. The investigation of PMD with random mode couplings were conducted in three kinds of fiber by the time-domain interferometric method. By using two manufacturing methods, MCVD(Modified Chemical Vapor Deposition) method and VAD(Vapor Phase Axial Deposition) method, the property of mechanical asymmetric lateral pressure, bending and twisting induced polarization mode dispersion were measured. The concatenated optical fibers were compared with other types.

  • PDF

Development of Polarization Mode Dispersion Compensator with a response time less than 200ms (응답 속도 200ms 이하의 편광모드분산 보상기 개발)

  • Seo Jae-Eun;Kim Sang-In;Jeoug Ki-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.47-48
    • /
    • 2003
  • A polarization mode dispersion(PMD) compensator with a reponse time less than 200ms has been developed. In our PMD compensator, a reset-free $LiNbO_3$ polarization controller was used in order to reduce the response time, and the compensation algorithm was based on maximization of degree of polarizaiton(DOP).

  • PDF

Compensations of Polarization Mode Dispersion and Thermal Drift in Optical Coherence Tomography with PZT Optical Delay Lines (광간섭 단층촬영(OCT)용 PZT 광경로 지연기에서의 편광모드 분산 및 열요동 보상)

  • Kim, Young-Kwan;Park, Sung-Jin;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.547-552
    • /
    • 2005
  • We have fabricated and characterized optical delay lines for optical coherence tomography, which is composed of cylindrical PZT(piezoelectric transducer) and single mode optical fiber. The polarization mode dispersion from the optical delay lines was compensated by the polarization controllers. By applying the duplex optical delay line, we minimized the thermal drift due to optical delay lines and obtained the scan range of 2 times that of a single optical delay line. The OCT system showed resolution of $18.6\pm0.5{\mu}m$, scanning range of 1.68mm, and scanning speed of 360.4mm/s.