• Title/Summary/Keyword: Polarization independent

Search Result 91, Processing Time 0.035 seconds

Design and Fabrication of a Polarization-Independent 1 ${\times}$ 8 InGaAsP/InP MMI Optical Splitter (편광에 무관한 1 ${\times}$ 8 InGaAsP/InP 다중모드간섭 광분배기의 설계 및 제작)

  • Yu, Jae-Su;Moon, Jeong-Yi;Bae, Seong-Ju;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.28-29
    • /
    • 2000
  • Optical power splitters and/or couplers are important components for optical signal distribution between channels both in wavelength division multiplexing(WDM) systems and photonic integrated circuits(PICs). Since polarization is usually not known after propagation in an optical fiber, passive WDM components have to be polarization insensitivity, Compared to alternatives such as directional couplers or Y-junction splitters, splitters based on multimode interference(MMI) have found a growing interest in recent yens because of their desirable characteristics, such as compact size, low excess loss, wide bandwidth, polarization independence, and relaxed fabrication tolerances$^{(1)}$ . These devices have been fabricated in polymers, silica, or III-V semiconductor materials. A1 $\times$ 4 MMI power splitter on InP materials that were suitable for application in the 1.55-${\mu}{\textrm}{m}$ region$^{(2)}$ . However, the fabrication process of the structure is too complicated and the photolithography tolerance is very tight. Also, a 1 $\times$ 16 InGaAsP/InP MMI power splitter with an excess loss of 2.2dB and a splitting ratio of 1.5dB was demonstrated by using deep etching$^{(3)}$ . The deep etching of the sidewalls through the entire guide layer of the slab waveguide resulted in a number of drawbacks$^{(4)}$ . (omitted)

  • PDF

Electron Emission and Degradation of the Pb($\textrm{Zr}_{0.5}\textrm{Ti}_{0.5}$)$\textrm{O}_3$Electron Guns with Various Upper Electrode Sizes (Pb($\textrm{Zr}_{0.5}\textrm{Ti}_{0.5}$)$\textrm{O}_3$전자총의 상부 전극 크기에 따른 전자 방출 및 열화)

  • Kim, Yong-Tae;Yun, Gi-Hyeon;Kim, Tae-Hui;Park, Gyeong-Bong
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1032-1036
    • /
    • 1999
  • The electron emission and degradation of the ferroelectric Pb($\textrm{Zr}_{0.5}\textrm{Ti}_{0.5}$)$\textrm{O}_3$ ceramics by the pulse electric field have been investigated as a function of the upper electrode diameter. Polarization increased with the decrease of the upper electrode diameter due to the increase of the volume fraction participated in the polarization reversal near the electrode edge. Simulation using ANSYS 5.3 for the electric field distribution showed that the electric field increased near the upper electrode edge of the asymmetric electrode structure. The ferroelectric volume near the upper electrode edge which contributed to the increase of the polarization and the emission charge per electrode diameter were independent on the upper electrode diameter. Polarization and dielectric constant were decreased due to the erosion of the upper electrode with repeating the emission cycles, but they were recovered by the electrode regeneration. The degradation of the ferroelectric surface resulted in the increase of the coercive field and dielectric loss.

  • PDF

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

Analysis of Major Error Factors in Coherent Beam Combination: Phase, Tip Tilt, Polarization Angle, and Beam Quality

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.406-415
    • /
    • 2024
  • The major error factors that degrade the efficiency of coherent beam combining (CBC) are numerically studied in a comprehensive manner, paying particular attention to phase, tip-tilt, polarization angle, and beam quality. The power in the bucket (PIB), normalized to the zero-error PIB, is used as a figure of merit to quantify the effect of each error factor. To maintain a normalized PIB greater than or equal to 95% in a 3-channel CBC configuration, the errors in phase, tip-tilt, and polarization angle should be less than 1.06 radians, 1.25 ㎛, and 1.06 radians respectively, when each of the three parameters is calculated independently with the other two set to zero. In a worst-case scenario of the composite errors within the parameter range for the independent-95%-normalized-PIB condition, the aggregate effect would reduce the normalized PIB to 83.8%. It is noteworthy that the PIB performances of a CBC system, depending on phase and polarization-angle errors, share the same characteristic feature. A statistical approach for each error factor is also introduced, to assess a CBC system with an extended number of channels. The impact of the laser's beam-quality factor M2 on the combining efficiency is also analyzed, based on a super-Gaussian beam. When M2 increases from 1 to 1.3, the normalized PIB is reduced by 2.6%, 11.8%, 12.8%, and 13.2% for a single-channel configuration and 3-, 7-, and 19-channel CBC configurations respectively. This comprehensive numerical study is expected to pave the way for advances in the evaluation and design of multichannel CBC systems and other related applications.

Polarization-independent Bragg blazing and Simultaneous Bragg and off-Bragg Blazing in a Periodic Strip Grating Structure over a Grounded Dielectric Slab (접지된 유전채 슬랩 위에 스트립 격자구조에서 입사피의 편파에 무관한 Bragg Blazing 현상과 Bradd 및 off-Bragg Blazing 현상)

  • 조웅희;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • 접지된 유전체슬랩 위에 주기적으로 스트립이 놓여있는 격자구조에 대한 전자파 산란현상을 반사격자(reflection grating) 관점과 누설파안테나(leaky wave antenna) 관점에서 조사하였다. 수치해석 결과로 입사파의 편파에 무관한 Bragg blazing 현실과 동시에 Bragg 및 off-Bragg blazing 현상이 확인되는 경우를 조사하였으며 그 특성(복소전파상수, 복사패턴, 산란특성)에 대하여 논의하였다.

  • PDF

h Study on the polarization independent vertical directional couplers with high Extinction Ratios (편광에 무관하고 매우 높은 소멸비를 가지는 수직 방향성 결합기에 관한 연구)

  • 정병민;김상택;김부균
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.184-185
    • /
    • 2002
  • 고속의 광 통신망을 구축하기 위해서는 대용량의 광 스위치가 요구된다. 이러한 대용량의 광 스위칭 시스템을 구성하는 단위 스위치는 작은 크기, 작은 손실, 높은 소멸비 등과 같은 특징을 가지고 있어야 하며 또한 편광에 따른 성능의 변화가 작아야한다. 최근 융합 수직 방향성 결합기(Fused Vertical Coupler, FVC)의 연구를 통하여 매우 짧은 소자 길이를 가지며 매우 높은 소멸비를 얻을 수 있는 수직 방향성 결합기 스위치가 제안되었다. (중략)

  • PDF

Polarization Independent, Figure-Eight Birefringent Sagnac Variable Comb-Filter/Attenuator

  • Kim, Sung-Won;Kang, Jin-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.298-299
    • /
    • 2004
  • We propose and theoretically analyze multi-functional integrated optical device based on figure-eight shaped birefringent Sagnac loops. Our analysis shows that the propose device exhibit many unique features which allows it to operate as a tunable high-Q comb filter with a good channel isolation, and the intensity transmission of the filter can be varied from zero to 100 percent.

  • PDF

Dual-wide-band absorber of truncated-cone structure, based on metamaterial

  • Kim, Y.J.;Yoo, Y.J.;Rhee, J.Y.;Kim, K.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.1-235.1
    • /
    • 2015
  • Artificially-engineered materials, whose electromagnetic properties are not available in nature, such as negative reflective index, are called metamaterials (MMs). Although many scientists have investigated MMs for negative-reflective-index properties at the beginning, their interests have been extended to many other fields comprising perfect lenses. Among various kinds of MMs, metamaterial absorbers (MM-As) mimic the blackbody through minimizing transmission and reflection. In order to maximize absorption, the real and the imaginary parts of the permittivity and permeability of MM-As should be adjusted to possess the same impedance as that of free space. We propose a dual-wide-band and polarization-independent MM-A. It is basically a triple-layer structure made of metal/dielectric multilayered truncated cones. The multilayered truncated cones are periodically arranged and play a role of meta-atoms. We realize not only a wide-band absorption, which utilizes the fundamental magnetic resonances, but also another wide-band absorption in the high-frequency range based on the third-harmonic resonances, in both simulation and experiment. In simulation, the absorption bands with absorption higher than 90% are 3.93 - 6.05 GHz and 11.64 - 14.55 GHz, while the experimental absorption bands are in 3.88 - 6.08 GHz and 9.95 - 13.84 GHz. The physical origins of these absorption bands are elucidated. Additionally, it is also polarization-independent because of its circularly symmetric structures. Our design is scalable to smaller size for the infrared and the visible ranges.

  • PDF

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.