• Title/Summary/Keyword: Polarization analysis

Search Result 750, Processing Time 0.025 seconds

Outage Probability Analysis of Dual-Polarized Antenna System (이중 편파 안테나시스템의 오수신 확률 분석)

  • Wang, Hanho;Noh, Gosan;Bahng, Seungjae;Park, Youn Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.771-773
    • /
    • 2014
  • Dual-polarization antenna system has been being researched for wireless communications under short range line-of-sight channel environments. In this paper, probability density function of signal-to-interference-ratio(SIR) for the dual-polarization antenna system is derived, and SIR outage is analyzed. It is shown that the upper bound capacity of a dual-polarization antenna system without polarization alignment is 4.5324 bps/hz.

Design and Analysis of Polarization Diversity Antenna for Mobile Terminals

  • Lee, Won-Woo;Rhee, Byung-Ho
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.155-158
    • /
    • 2014
  • This letter presents an antenna design method for an orthogonally-polarized dual antenna for use in mobile stations (MSs) and includes a verification method for improving the link-level throughput performance of an MS that uses a proposed multiple-input multiple-output antenna. The link-level throughput performance of an MS is strongly related to the correlation between antenna branches, which is determined by the cross polarization discrimination of the second branch antenna, both numerically and experimentally.

Analysis of Effect of Phase Error Sources of Polarization Components in Incoherent Triangular Holography

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • We derive the point-spread function of the reconstructed image from a point-source complex hologram, which includes phase error caused by polarization components, in the longitudinal direction of the point-spread function and analyze the effect of the error sources of polarization components having influence on image reconstruction of a point-source complex hologram in incoherent triangular holography.

Runoff Analysis Using Dual Polarization RADAR and Distributed Model (이중편파 레이더강우와 분포형 모형을 이용한 유출해석)

  • Jeong, Jiyoung;Yu, Myungsu;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.801-812
    • /
    • 2014
  • In this study, average rainfall of basin was estimated and compared with that obtained from Biseulsan dual polarization RADAR. And the runoffs are estimated using Vflo distribution model for Habcheon reservoir basin and Huicheon basin. In the rainfall estimation using dual polarization RADAR, the rainfall was estimated by using the specific phase difference and differential reflectivity of dual polarization RADAR variables. As a result, for all events rainfall estimation using dual polarization RADAR has the closest value to the gauge rainfall in terms of the peak rainfall and total rainfall. Also, runoff simulation results from dual polarization RADAR show the better results. It is concluded that the method using dual polarization radar can improve the accuracy more than a single polarization radar using only horizontal reflectivity.

Lossless Linear Polarization Rotator by Using a ECB Liquid Crystal Cell and a Quarter Wave Plate (ECB 액정 셀과 1/4 파장판을 이용하여 구성한 무손실 선형편광 회전기)

  • Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • We make a simple electrically controllable linear polarization rotator over $360^{\circ}$ without loss by using a thick ECB(electrically controlled birefringence) liquid crystal cell and a quarter wave plate at 514.5 nm wavelength. Its operating principle can be analyzed and explained by using simple polarization analysis and experimental data. We demonstrate that the degree of polarization of the rotator is 0.964 and the temporal variation for 1 week lies within ${\pm}1$ degree. We can easily solve the problem of nonlinearity of the dependence of the rotational angle of linear polarization on the applied voltage by changing the utilized voltage range or its fitting curve.

An Approach for Modeling of Sound Absorbing Material using Debye Polarization (Debye Polarization을 이용한 흡음재 모델링에 대한 연구)

  • Park, Kyu-Chil;Ito, Kazufumi;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1391-1396
    • /
    • 2012
  • It is introduced an approach to model for numerical analysis of a sound absorbing material that has different absorbing coefficient according to frequency. For modeling of a sound absorbing material, we tried to model by a traditional modeling method. But it had large differences on frequency domain, especially a capacitance component due to increasing of frequency. We approach to model a sound absorbing material by the Debye polarization technique with non-linear least square method. At first, we estimated parameters form a polyurethane with thickness 25 mm, then we could model a polyurethane with thickness 50 mm using same parameters. Therefor, we could find that the Debye polarization is an useful way to model sound absorbing materials.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Multispectral viewing angle characterization of LCDs and their components

  • Boher, P.;Leroux, T.;Bignon, T.;Glinel, D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1366-1369
    • /
    • 2008
  • We introduce new instrument that provides the spectral radiance at any incidence and azimuth angle in all the visible range. LCD emission and transmittance properties of display components can be measured precisely at each incidence and azimuth angle and wavelength. Full polarization spectral analysis can be also made.

  • PDF

Processing of Downhole S-wave Seismic Survey Data by Considering Direction of Polarization

  • Kim, Jin-Hoo;Park, Choon-B.
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • Difficulties encountered in downhole S-wave (shear wave) surveys include the precise determination of shear wave travel times and determination of geophone orientation relative to the direction of polarization caused by the seismic source. In this study an S-wave enhancing and a principal component analysis method were adopted as a tool for determination of S-wave arrivals and the direction of polarization from downhole S-wave survey data. An S-wave enhancing method can almost double the amplitudes of S-waves, and the angle between direction of polarization and a geophone axis can be obtained by a principal component analysis. Once the angle is obtained data recorded by two horizontal geophones are transformed to principal axes, yielding so called scores. The scores gathered along depth are all in-phase, consequently, the accuracy of S-wave arrival picking could be remarkably improved. Applying this processing method to the field data reveals that the test site consists of a layered ground earth structure.

  • PDF