• Title/Summary/Keyword: Polar Solvents

Search Result 205, Processing Time 0.025 seconds

Preparation and Thermal Properties of Enaryloxynitriles End-Capped Polymer Precursors

  • Gil, Dae Su;Gong, Myeong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.557-561
    • /
    • 2000
  • Various enaryloxynitriles-terminated reactive polymer precursors containing rigid aromatic units were prepared from various diamines and 1-(p-formylphenyl)-1-phenyl-2,2-dicyanoethene (1). Arylate end-capped model compounds linked with azomethine bond were also prepared by reacting p-formylphenyl benzoate with diamines to compare the curing ability. The oligomers were highly soluble in polar aprotic solvents such as N,N-dimethylformamide, dimethylsulfoxide and N-methyl-2 -pyrrolidinone. They generally showed an exothermic curing process between $280-350^{\circ}C$, attributable to the thermal crosslinking of the dicyanovinyl group in DSC analysis, and no weight loss at curing temperature. Upon heating the polymer precursors, heat-resistant and insoluble network polymers were obtained. Thermogravimetric analyses of the precursors containing rigid aromatic units showed thermal stability with a 77-92% residual weight at $500^{\circ}C$ under nitrogen.

Group Contribution Method for Group Contribution Method for Estimation of Vapor Liquid Equilibria in Polymer Solutions

  • Oh, Suk-Yung;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.829-841
    • /
    • 2009
  • This study introduces a specified group-contribution method for predicting the phase equilibria in polymer solutions. The method is based on a modified double lattice model developed previously. The proposed model includes a combinatorial energy contribution that is responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, a polar force and specific energy contribution. Using the group-interaction parameters obtained from data reduction, the solvent activities for a large variety of mixtures of polymers and solvents over a wide range of temperatures can be predicted with good accuracy. This method is simple but provides improved predictions compared to those of the other group contribution methods.

Synthesis and Characterization of Novel Polyurethanes Based on 4-{(4-Hydroxyphenyl)iminomethyl} phenol

  • Raghu, A.V.;Jeong, Han-Mo;Kim, Jae-Hoon;Lee, Yu-Rok;Cho, Youn-Bok;Sirsalmath, Kiran
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.194-199
    • /
    • 2008
  • Four novel polyurethanes were prepared from 4-{(4-hydroxyphenyl)iminomethyl} phenol by reactions with two aromatic diisocyanates, 4,4'-diphenylmethane diisocyanate and toluene 2,4-diisocyanate, and two aliphatic diisocyanates, isophorone diisocyanate and hexamethylene diisocyanate. The polyurethanes formed were characterized by UV-vis, fluorescence, FT-IR, $^1H$-NMR, $^{13}C$-NMR, differential scanning calorimetry, thermogravimetry, and X-ray diffraction. The polymers were semi-crystalline and all polymers were soluble in polar aprotic solvents.

Preparation and Thermal Properties of Poly(enaminonitriles-ester)s Derived from Dicyanovinyl-Containing Bis-Hydroxy Monomers

  • 김종태;공명선
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.328-333
    • /
    • 1997
  • Dicyanovinyl-containing bis-hydroxy monomers, p-bis[1-(4-hydroxypiperidinyl)]-2,2-dicyanovinyl]benzene (2), p-bis[1-[1-(2-hydroxyethyl)piperazinyl]-2,2-dicyanovinyl]benzene (3), p-bis[1-(4-hydroxyphenylamino)-2,2-dicyanovinyl]benzene (4) and p-bis[1-[N-methyl-(N-hydroxyethyl)amino]]-2,2-dicyanovinyl]benzene (5) were prepared from p-bis(1-chloro-2,2-dicyanovinyl)benzene (1) and the corresponding amino alcohol. The poly(enaminonitriles-ester)s with a variety of chemical structures in the main chain were prepared from them. The chemical structure of polymers was confirmed through the syntheses of their corresponding model compounds. The polymers are easily soluble in polar aprotic solvents such as DMF, DMSO and NMP. Brittle and hard films can be cast from DMF solutions of polymers. Most polymers showed a large exotherm in DSC analyses and undergo a curing reaction around 350 ℃ to form insoluble materials. The polymers consisting of rigid aromatic moieties show 80-88% residual weight at 500 ℃ under nitrogen.

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

($^{31}P-NMR$ chemical shift variation of O-ethyl ethylphosphonic acid with change of pH's and solvents in metabolic and chemical oxidation of O-ethyl S-methyl ethyphosphonothioate (O-Ethyl S-methyl ethylphosphonothioate의 대사(代謝) 주생성물(主生成物인) O-ethyl ethylphosphonic acid의 $^{31}P-NMR$ chemical shift 에 대한 pH 및 용매 효과)

  • Hur, Jang-Hyun;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.169-175
    • /
    • 1993
  • O-Ethyl S-methyl ethylphosphonothioate was studied for chemical and metabolic oxidation using $^{31}P-NMR$ analyses. The chemical shifts of O-ethyl ethylphosphonic acid (2) which is one of major metabolites were changed with the variation of oxidation systems. $^{31}P-NMR$ chemical shifts of 2 were observed at 40.15ppm from oxidaton by MCPBA, 30.98 ppm by MMPP, 29.31 ppm from in vitro rat liver microsomal oxidation, and 29.10 ppm from in vivo metabolism in houseflies. $^{31}P-NMR$ chemical shift of 2 in two different solvents such as deutero-chloroform and deuterium oxide were observed at 30.70 ppm and 40.15 ppm, respectively. And those of the metabolites were also observed at around 30 ppm under the conditions of pH 3, 5.6 and 14 and 47.91 ppm under pH 1 which is a strong acidic condition. It could be explained that the ionized form of 2 should have greater shielding effect on phosphorus atom and hence shows upfield chemical shift in polar solvents and alkaline conditions. On the other hand, a protonated form under organic solvents and the strong acidic condition should have less shielding effect than its ionized form, shifting the peak downfield.

  • PDF

Antioxidative Effects of Soybean Extracts by using Various Solvents (다양한 용매를 이용한 대두 추출물의 항산화효과)

  • Kim, Jee-Young;Maeng, Young-Sun;Lee, Ki-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.635-639
    • /
    • 1995
  • The effective extraction of antioxidative substances from soybean was investigated by using various solvents, such as water, ethanol, methanol, acetone, chloroform, benzene, ethyl acetate, ether, dichloromethane, and hexane. Extraction was performed by cold method at $30^{\circ}C$ and by reflux method at $85^{\circ}C$. The antioxidative effect of the extracts was determined by peroxide value during the oxidation of soybean oil containing the extracts at $105^{\circ}C$ for 10 hours, and also by TBARS(thiobarbituric acid reactive substances) formed during the peroxidation of egg lecithin liposomes. The antioxidant activity of the extracts from raw soybean was higher than that from defatted soybean. The antioxidant activity of the extracts by reflux method was higher than that by cold method. The methanol extract from defatted and roasted soybean(DRS) showed the highest antioxidative effect against oxidation of soybean oil, while the water extract from DRS in egg lecithin liposomes. In the peroxidation of egg lecithin liposomes, the antioxidative effect of polar solvents extracts were higher than those by nonpolar solvents extracts.

  • PDF

Fates of water and salts in non-aqueous solvents for directional solvent extraction desalination: Effects of chemical structures of the solvents

  • Choi, Ohkyung;Kim, Minsup;Cho, Art E.;Choi, Young Chul;Kim, Gyu Dong;Kim, Dooil;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2019
  • Non-aqueous solvents (NASs) are generally known to be barely miscible, and reactive with polar compounds, such as water. However, water can interact with some NASs, which can be used as a new means for water recovery from saline water. This study explored the fate of water and salt in NAS, when saline water is mixed with NAS. Three amine solvents were selected as NAS. They had the same molecular formula, but were differentiated by their molecular structures, as follows: 1) NAS 'A' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain, 2) NAS 'B' with symmetrical structure and having the hydrophilic group (NH) at the middle of the straight carbon chain, 3) NAS 'C' having the hydrophilic group ($NH_2$) at the end of the straight carbon chain but possessing a hydrophobic ethyl branch in the middle of the structure. In batch experiments, 0.5 M NaCl water was blended with NASs, and then water and salt content in the NAS were individually measured. Water absorption efficiencies by NAS 'B' and 'C' were 3.8 and 10.7%, respectively. However, salt rejection efficiency was 98.9% and 58.2%, respectively. NAS 'A' exhibited a higher water absorption efficiency of 35.6%, despite a worse salt rejection efficiency of 24.7%. Molecular dynamic (MD) simulation showed the different interactions of water and salts with each NAS. NAS 'A' formed lattice structured clusters, with the hydrophilic group located outside, and captured a large numbers of water molecules, together with salt ions, inside the cluster pockets. NAS 'B' formed a planar-shaped cluster, where only some water molecules, but no salt ions, migrated to the NAS cluster. NAS 'C', with an ethyl group branch, formed a cluster shaped similarly to that of 'B'; however, the boundary surface of the cluster looked higher than that of 'C', due to the branch structure in solvent. The MD simulation was helpful for understanding the experimental results for water absorption and salt rejection, by demonstrating the various interactions between water molecules and the salts, with the different NAS types.

The Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Mono-Azobenzene Group in the Side Chain (곁사슬에 모노-아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 성질에 관한 연구)

  • 이상배;양정성;박동규
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.737-743
    • /
    • 2000
  • Polyquinonediimines (PQDI) which have stable structure on heat and contains mono-azobenzene in the side chain were synthesized by means of condensation polymerization under TiCl$_4$. The synthesized monomers and polymers were identified by FT-IR, $^1$H-NMR, and elementary analysis. Especially, PQDI was comfirmed by the double-bonding peak of >C=N appeared near 1625 $cm^{-1}$ / by means of FT-IR spectrum. PQDI containing mono-azobenzene group in both side chains wat not soluble in non-polar solvents at all but partially soluble in the polar solvents having small dielectric constant, and dissolved in the strong acid such as sulfuric acid and $CH_3$SO$_3$H. Molecular weight distribution of PQDI measured by GPC showed 1.74. It was confirmed through X-ray diffraction analysis that the polymer was partially crystalline at the low angle region, but amorphous after heat treatment at 1$25^{\circ}C$. The glass transition temperature (T$_{g}$ ) of synthesized polymer was measured as 1$25^{\circ}C$ by differential scanning calorimetry. The SHG value for $\chi$$^{(2)}$ after poling at 1$25^{\circ}C$ was 8.6 pm/V (λ=1.542 ${\mu}{\textrm}{m}$). The SHG value slowly decreased with time from the start but appeared temporal stability after 100 hours.

  • PDF

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF