• Title/Summary/Keyword: Poisson analysis

Search Result 801, Processing Time 0.026 seconds

Multiprocess Dynamic Poisson Mode1s: The Covariates Case

  • Shim, Joo-Yong;Sohn, Joong-Kweon
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.279-288
    • /
    • 1998
  • We propose a multiprocess dynamic Poisson model for the analysis of Poisson process with the covariates. The algorithm for the recursive estimation of the parameter vector modeling time-varying effects of covariates is suggested. Also the algorithm for forecasting of numbers of events at the next time point based on the information gathered until the current time is suggested.

  • PDF

Demand Analysis for Community-based Tourism Using Count Data Models (가산자료모형을 이용한 지역사회기반형 관광수요 분석)

  • Yun, Hee-Jeong
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.2
    • /
    • pp.247-255
    • /
    • 2011
  • This study analyzed the demand for a community-based tourism site using a poisson model, a negative binominal model, a truncated poisson model and a truncated negative binominal model as count data models. For these reasons, questionnaire surveys were conducted into 5 community-based tourism sites in Chuncheon city with 406 tourists, and was analyzed using the STATA program. The fitness levels of four models were significant(p=0.0000) using a likelihood ratio test. The study results suggest that the demand of community-based tourism sites for visiting tourists was influenced by a pre-visiting experience, recognition of sustainable tourism, visitation of downtown, purchase of souvenir or farm produce, conversation with regional residents, regional harmony, preservation of natural resources and sex within the poisson and truncated poisson models. However, the variables of visitation of downtown, preservation of natural resources and sex were not significant within the negative binominal model and the visitation of downtown and preservation of natural resources were not significant within the truncated negative binominal model. The results of the visiting demand of community-based tourism sites can provide information for sustainable regional development strategies.

A BAYESIAN ANALYSIS FOR PRODUCT OF POWERS OF POISSON RATES

  • KIM HEA-JUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • A Bayesian analysis for the product of different powers of k independent Poisson rates, written ${\theta}$, is developed. This is done by considering a prior for ${\theta}$ that satisfies the differential equation due to Tibshirani and induces a proper posterior distribution. The Gibbs sampling procedure utilizing the rejection method is suggested for the posterior inference of ${\theta}$. The procedure is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. A salient feature of the procedure is that it provides a unified method for inferencing ${\theta}$ with any type of powers, and hence it solves all the existing problems (in inferencing ${\theta}$) simultaneously in a completely satisfactory way, at least within the Bayesian framework. In two examples, practical applications of the procedure is described.

A Study on the Determinants of Drinking Demand and Expenditure of College Students

  • Lee, Seung-gil
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.215-224
    • /
    • 2021
  • The purpose of this study is to estimate the factors that affect college students' drinking needs and spending. An analysis model to estimate the determinants affecting drinking needs was applied with a truncated Poisson model and a truncated negative binomial model. Tests to select more appropriate models of the two types were made using the comparison of log-likelihood function and the over-dispersion test. The analysis result was interpreted by applying the truncated negative binomial model as the truncated Poisson model showed over-dispersion. We also applied the Tobit model to analyze the determinantsthat affect college students' expenditure on drinking. According to the analysis, gender, grade, allowance and parental occupation were the factors influencing statistics, and gender, type of household income, and student religion were the factors influencing expenditure.

Area-to-Area Poisson Kriging and Spatial Bayesian Analysis in Mapping of Gastric Cancer Incidence in Iran

  • Asmarian, Naeimehossadat;Jafari-Koshki, Tohid;Soleimani, Ali;Ayatollahi, Seyyed Mohammad Taghi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4587-4590
    • /
    • 2016
  • Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Area-to-area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran.

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

Comparison of probability distributions to analyze the number of occurrence of torrential rainfall events (집중호우사상의 발생횟수 분석을 위한 확률분포의 비교)

  • Kim, Sang Ug;Kim, Hyeung Bae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.481-493
    • /
    • 2016
  • The statistical analysis to the torrential rainfall data that is defined as a rainfall amount more than 80 mm/day is performed with Daegu and Busan rainfall data which is collected during 384 months. The number of occurrence of the torrential rainfall events can be simulated usually using Poisson distribution. However, the Poisson distribution can be frequently failed to simulate the statistical characteristics of the observed value when the observed data is zero-inflated. Therefore, in this study, Generalized Poisson distribution (GPD), Zero-Inflated Poisson distribution (ZIP), Zero-Inflated Generalized Poisson distribution (ZIGP), and Bayesian ZIGP model were used to resolve the zero-inflated problem in the torrential rainfall data. Especially, in Bayesian ZIGP model, a informative prior distribution was used to increase the accuracy of that model. Finally, it was suggested that POI and GPD model should be discouraged to fit the frequency of the torrential rainfall data. Also, Bayesian ZIGP model using informative prior provided the most accurate results. Additionally, it was recommended that ZIP model could be alternative choice on the practical aspect since the Bayesian approach of this study was considerably complex.

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Application of the Weibull-Poisson long-term survival model

  • Vigas, Valdemiro Piedade;Mazucheli, Josmar;Louzada, Francisco
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.325-337
    • /
    • 2017
  • In this paper, we proposed a new long-term lifetime distribution with four parameters inserted in a risk competitive scenario with decreasing, increasing and unimodal hazard rate functions, namely the Weibull-Poisson long-term distribution. This new distribution arises from a scenario of competitive latent risk, in which the lifetime associated to the particular risk is not observable, and where only the minimum lifetime value among all risks is noticed in a long-term context. However, it can also be used in any other situation as long as it fits the data well. The Weibull-Poisson long-term distribution is presented as a particular case for the new exponential-Poisson long-term distribution and Weibull long-term distribution. The properties of the proposed distribution were discussed, including its probability density, survival and hazard functions and explicit algebraic formulas for its order statistics. Assuming censored data, we considered the maximum likelihood approach for parameter estimation. For different parameter settings, sample sizes, and censoring percentages various simulation studies were performed to study the mean square error of the maximum likelihood estimative, and compare the performance of the model proposed with the particular cases. The selection criteria Akaike information criterion, Bayesian information criterion, and likelihood ratio test were used for the model selection. The relevance of the approach was illustrated on two real datasets of where the new model was compared with its particular cases observing its potential and competitiveness.