• Title/Summary/Keyword: Point-to-point tracking

Search Result 1,055, Processing Time 0.03 seconds

Improving the performance of PV system using the N-IC MPPT methods (N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF

Start Point Detection Method for Tracing the Injection Path of Steel Rebars (철근 사출 궤적 추적을 위한 시작지점 검출 방법)

  • Lee, Jun-Mock;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • Companies that want to improve their manufacturing processes have recently introduced the smart factory, which is particularly noticeable. The ultimate goal is to maximize the area of the smart factory that performs the process of the production facility completely with minimal manual control and to minimize errors of reasoning. This research is a part of a project for unmanned production, management, packaging, and delivery management and the detection of the start point of rebars to perform the automatic calibration of the rollers through the tracking of the automated facilities of unmanned production. It must meet the requirement to accurately track the position from the start point to the end point. In order to improve the tracking performance, it is important to set the accurate start point. However, the probability of tracking errors is high depending on environments such as illumination and dust through the conventional time-based detection method. In this paper, we propose a starting point detection method using the average brightness change of high speed IR camera to reduce the errors according to the environments, As a result, its performance is improved by more than 15%.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

New Method for MPPT Control of Photovoltaic System (태양광전시스템의 최대출력점추적제어를 위한 새로운 방식)

  • Chung, C.B.;Jho, J.H.;Jho, J.M.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1256-1258
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuate on the variations of insolation, temperature and loads. To obtain maximum power from solar cell, photovoltaic system cell power system usually requires maximum power point tracking controller. This paper propose Maximum power point tracking method using zero slope of differential value of maximum power. The power compare method traces to maximum power point rapidly but oscillate on the maximum power point largely, when quantity insolation variation is big. The power compare method is traces to maximum power point slowly but oscillate maximum point on the maximum power point smally, when quantity insolation variation is small. To solve two problem of the power compare method, designed zero slope of differential value of maximum power.

  • PDF

Predictive Control of an Efficient Human Following Robot Using Kinect Sensor (Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어)

  • Heo, Shin-Nyeong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

Human Body Motion Tracking Using ICP and Particle Filter (반복 최근접점와 파티클 필터를 이용한 인간 신체 움직임 추적)

  • Kim, Dae-Hwan;Kim, Hyo-Jung;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.977-985
    • /
    • 2009
  • This paper proposes a real-time algorithm for tracking the fast moving human body. Although Iterative closest point (ICP) algorithm is suitable for real-time tracking due to its efficiency and low computational complexity, ICP often fails to converge when the human body moves fast because the closest point may be mistakenly selected and trapped in a local minimum. To overcome such limitation, we combine a particle filter based on a motion history information with the ICP. The proposed human body motion tracking algorithm reduces the search space for each limb by employing a hierarchical tree structure, and enables tracking of the fast moving human bodies by using the motion prediction based on the motion history. Experimental results show that the proposed human body motion tracking provides accurate tracking performance and fast convergence rate.

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

Image-based Visual Servoing Through Range and Feature Point Uncertainty Estimation of a Target for a Manipulator (목표물의 거리 및 특징점 불확실성 추정을 통한 매니퓰레이터의 영상기반 비주얼 서보잉)

  • Lee, Sanghyob;Jeong, Seongchan;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.403-410
    • /
    • 2016
  • This paper proposes a robust image-based visual servoing scheme using a nonlinear observer for a monocular eye-in-hand manipulator. The proposed control method is divided into a range estimation phase and a target-tracking phase. In the range estimation phase, the range from the camera to the target is estimated under the non-moving target condition to solve the uncertainty of an interaction matrix. Then, in the target-tracking phase, the feature point uncertainty caused by the unknown motion of the target is estimated and feature point errors converge sufficiently near to zero through compensation for the feature point uncertainty.

A Feature Point Tracking Method By Using Template Matching and Buffer (템플릿 매칭과 버퍼를 이용한 특징점 추적 방법)

  • Cho, Jeong-Hyun;Ahn, Cheol-Woong;Jun, Jae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.173-179
    • /
    • 2014
  • Today, a surgery for cataract of Korean society frequently come to operation. A method for treating cataracts have been developed in various ways. Widely used method is a method to use the artificial lens and replace it with the existing lens. The surgery can be inserted exactly according to the angle and points that are calculated in advance in the intraocular lens insertion is important. However, The lens insertion point can delete or blur the display due to such factors as foreign material coming out of the eye during surgery. Therefore, The lens insertion point needs a method of tracking the image processing by receiving the camera images in real time display method. In this paper, we propose a feature point tracking method by using template matching and buffer. a simulation results show that our ideas can track a feature point of the intraocular lens insertion.

Variable Step-Size MPPT Control based on Fuzzy Logic for a Small Wind Power System (소형풍력발전시스템을 위한 퍼지로직 기반의 가변 스텝 사이즈 MPPT 제어)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2012
  • This paper proposes the fuzzy logic based variable step-size MPPT (Maximum Power Point Tracking) method for the stability at the steady state and the improvement of the transient response in the wind power system. If the change value of duty ratio is set on stability of the steady state, MPPT control traces to maximum power point slowly. And if the change value is set on improvement of the transient response, the system output oscillates at the maximum power point. By adjusting the step size with fuzzy logic, it can be improved the MPPT response speed and stability at steady state when MPPT control is performed to track the maximum power point. The effectiveness of the proposed method has been verified by simulations and experimental results.