• Title/Summary/Keyword: Point-extraction

Search Result 936, Processing Time 0.035 seconds

A New Algorithm for P_wave Detection in the ECG signal (심전도 신호 P파 검출 알고리즘에 관한 연구)

  • Joang, Hee-Kyo;Kim, Kwang-Keun;Hwang, Sun-Chul;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.15-18
    • /
    • 1989
  • This paper presents a new algorithm for P-wave detection in the ECG signal. We detect the peak and valley point using significant point extraction algorithm with 9-point derivative. Because P-wave duration is changed according to heart-rates, we search for the R-peak and calculate the R-R interval time prior to the determination of P-wave duration threshold values in order to actively adapt to the change of P duration. We determine the parameters for P-wave detection and then P-peak, P-onset and P-offset are detected by these parameters. The results obtained from the proposed algorithm have detected successively P-wave almost more than 90%.

  • PDF

Development of a Real-time Voice Recognition Dialing System; (실시간 음성인식 다이얼링 시스템 개발)

  • 이세웅;최승호;이미숙;김흥국;오광철;김기철;이황수
    • Information and Communications Magazine
    • /
    • v.10 no.10
    • /
    • pp.22-29
    • /
    • 1993
  • This paper describes development of a real-time voice recognition dialing system which can recognize around one hundred word vocabularies in speaker independent mode. The voice recognition algorithm is implemented on a DSP board with a telephone interface plugged in an IBM PC AT/486. In the DSP board, procedures for feature extraction, vector quantization(VQ), and end-point detection are performed simultaneously in every 10msec frame interval to satisfy real-time constraints after the word starting point detection. In addition, we optimize the VQ codebook size and the end-point detection procedure to reduce recognition time and memory requirement. The demonstration system is being displayed in MOBILAB of Korea Mobile Telecom at the Taejon EXPO '93.

  • PDF

Extraction of bridge information based on the double-pass double-vehicle technique

  • Zhan, Y.;Au, F.T.K.;Yang, D.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.679-691
    • /
    • 2020
  • To identify the bridge information from the response of test vehicles passing on it (also known as the indirect approach) has aroused the interest of many researchers thanks to its economy, easy implementation and less disruption to traffic. The surface roughness of bridge remains an obstacle for such method as it contaminates the vehicle response severely and thereby renders many vehicle-response-based bridge identification methods ineffective. This study aims to eliminate such effect with the responses of two different test vehicles. The proposed method can estimate the surface profile of a bridge based on the acceleration data of the vehicles running on the bridge successively, and obtain the normalized contact point response, which proves to be relatively immune to surface roughness. The frequencies and mode shapes of bridge can be further extracted from the normalized contact point acceleration with spectral analysis and Hilbert transform. The effectiveness of the proposed method is verified numerically with a three-span continuous bridge. The influence of measurement noise is also examined.

An Approach for Segmentation of Airborne Laser Point Clouds Utilizing Scan-Line Characteristics

  • Han, Soo-Hee;Lee, Jeong-Ho;Yu, Ki-Yun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.641-648
    • /
    • 2007
  • In this study, we suggest a new segmentation algorithm for processing airborne laser point cloud data which is more memory efficient and faster than previous approaches. The main principle is the reading of data points along a scan line and their direct classification into homogeneous groups as a single process. The results of our experiments demonstrate that the algorithm runs faster and is more memory efficient than previous approaches. Moreover, the segmentation accuracy is generally acceptable.

  • PDF

A New Approach to Fingerprint Detection Using a Combination of Minutiae Points and Invariant Moments Parameters

  • Basak, Sarnali;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.421-436
    • /
    • 2012
  • Different types of fingerprint detection algorithms that are based on extraction of minutiae points are prevalent in recent literature. In this paper, we propose a new algorithm to locate the virtual core point/centroid of an image. The Euclidean distance between the virtual core point and the minutiae points is taken as a random variable. The mean, variance, skewness, and kurtosis of the random variable are taken as the statistical parameters of the image to observe the similarities or dissimilarities among fingerprints from the same or different persons. Finally, we verified our observations with a moment parameter-based analysis of some previous works.

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.255-263
    • /
    • 2012
  • This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

A study on correspondence problem of stereo vision system using self-organized neural network

  • Cho, Y.B.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.170-179
    • /
    • 1993
  • In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.

  • PDF

An Efficient Method for Korean Noun Extraction Using Noun Patterns (명사 출현 특성을 이용한 효율적인 한국어 명사 추출 방법)

  • 이도길;이상주;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.173-183
    • /
    • 2003
  • Morphological analysis is the most widely used method for extracting nouns from Korean texts. For every Eojeol, in order to extract nouns from it, a morphological analyzer performs frequent dictionary lookup and applies many morphonological rules, therefore it requires many operations. Moreover, a morphological analyzer generates all the possible morphological interpretations (sequences of morphemes) of a given Eojeol, which may by unnecessary from the noun extraction`s point of view. To reduce unnecessary computation of morphological analysis from the noun extraction`s point of view, this paper proposes a method for Korean noun extraction considering noun occurrence characteristics. Noun patterns denote conditions on which nouns are included in an Eojeol or not, which are positive cues or negative cues, respectively. When using the exclusive information as the negative cues, it is possible to reduce the search space of morphological analysis by ignoring Eojeols not including nouns. Post-noun syllable sequences(PNSS) as the positive cues can simply extract nouns by checking the part of the Eojeol preceding the PNSS and can guess unknown nouns. In addition, morphonological information is used instead of many morphonological rules in order to recover the lexical form from its altered surface form. Experimental results show that the proposed method can speed up without losing accuracy compared with other systems based on morphological analysis.

Efficient point cloud data processing in shipbuilding: Reformative component extraction method and registration method

  • Sun, Jingyu;Hiekata, Kazuo;Yamato, Hiroyuki;Nakagaki, Norito;Sugawara, Akiyoshi
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.202-212
    • /
    • 2014
  • To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.