• Title/Summary/Keyword: Pocheon stream

Search Result 7, Processing Time 0.018 seconds

Changes of Epilithic Diatom Communities according to Urbanization Influence in the Pocheon and Youngpyeong Streams (도시화 정도에 따른 포천천과 영평천의 돌 부착규조 군집 변화)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.468-480
    • /
    • 2007
  • The urbanization is altering the hydrology, water quality, channel form of waterway and changing the composition of biological communities in the aquatic ecosystem. Recently, towns grew bigger by the drift of large numbers of people and the medium and small leather and dyeing industries around the Pocheon and Youngpyeong streams. The discharges of sewage were increased by them. The UII (urban intensity index) was 85 (st. P-3) and 91 (st. P-6) in the Pocheon stream and about 20 in the Youngpyeong stream. A total 141 taxa of epilithic diatoms which were composed of 2 order, 8 family, 30 genera. Dominant species were Navicula saprophila, N. subminuscula, Nitzschia palea, Gomphonema pseudoaugur in the Pocheon stream and Achnanthes alteragracillima, A. convergens, A. minutissima, N. minima, N. fonticola, N. frustulum and Cymbella minuta var. silesiaca in the Youngpyeong stream. It Showed the different composition of dominant species by the urbanization near two streams. In the relationships between UII and environmental factors such as EC, BOD, COD, TN, TP and DAIpo, UII showed the high relations $(r^2>0.8)$. It was the difference of organic pollution according to urbanization. It therefore, was higher the relative abundance and more the numbers of saprophilous taxa in the Pocheon stream than the Youngpyeong stream. The water quality of two streams by biological indicators(DAIpo) was polysaprobic state(st. P-3, P-4, P-5) in the Pocheon stream and was oligosaprobic (Y-1), mesosaprobic (Y-2, 3) and polysaprobic state (Y-4) in the Youngpyeong stream during the investigation periods.

Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM) (포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Yong-Jae;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.317-330
    • /
    • 2009
  • To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

Comparative Study on Fractal Dimension Estimation in River Basin (하천의 프랙탈 차원 산정에 대한 비교 연구)

  • Park, Jin Sung;Kim, Hung Soo;Ahn, Won Sik
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.15-27
    • /
    • 2003
  • The fractal study in river basin has been performed for the sinuosity of an individual stream and bifurcation of the stream network. The previous studies has suggested many methods or equations for the fractal dimension estimation in a river network. This study used those many equations for the estimation of fractal dimensions on the streams such as Bokha, Gonjiam, and Pocheon streams. The estimated dimensions are in the range of 1 to 1.359 for the individual stream and 1.634 to 2 for the stream network. The most of equations were suggested based on the assumption of self-similarity of a river basin for the individual stream and stream network. However, the real river basin could be characterized by self-affinity rather than self-similarity. Even though we estimate the dimensions by using many equations, we could not recommend which one is better equation for the estimation of fractal dimension. This might be from the self-similarity assumption of equations. Therefore, the assumption and research work of self-affinity will be needed for the appropriate estimation of fractal dimension in river basin.

  • PDF

Characteristics of local events occured in and around the Korean Peninsula in 2002 (한반도 일원에서 발생한 Event 특성)

  • 전정수;제일영;지헌철;박윤경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.12-15
    • /
    • 2003
  • Korea Institute of Geoscience and Mineral Resources(KIGAM) is operating Wonju Korea Seismic Research Station(KSRS), 29 regional seismic research stations and 5 Korea-China joint seismic stations in China. Also KIGAM is operating Korea Earthquake Monitoring System (KEMS) to archive the real-time data stream and to determine event parameters (epicenter, origin time, and magnitude) by the automatic processing and analyst review. To do this, KEMS used KIGAM's regional seismic network and other institute's network in a near real-time base. From Dec. 1, 2001 to Nov. 30, 2002, 3,827 seismic events were analyzed in a automatic processing procedure and finally 3,437 events were analyzed by analyst and archived. But problem is this event catalog includes not only natural earthquake, but also artificial events produced by the blast. More than 80 % events were concentrated in daytime and many events were concentrated in the confirmed blast sites, Pyeongyang, Pocheon, Yeongjong-do, Donghae city, etc. Because these artificial events are a major potential cause of error when estimating the seismicity of a specific region, discrimination procedure has to be developed in the first place.

  • PDF

Numerical Ages and Petrological Characteristics of the Basalts designated as Natural Monument, Korea (국내 천연기념물 현무암체들의 형성시기와 암석학적 특징)

  • Yong-Un Chae;Cheong-Bin Kim;Sujin Ha;Jong-Deock Lim;Hyoun Soo Lim
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.449-471
    • /
    • 2024
  • We investigated the radiometric ages and petrological characteristics of basaltic rocks with columnar joints, basalt gorge, pillow lava, and mantle xenolith, from the geoheritages designated as Natural Monuments of Korea in recognition of their historical, academic, and scenic excellence. A total of 7 Natural Monuments were selected. They are 'Basalt gorge along Daegyocheon Stream of Hantangang River', 'Basalt gorge and Bidulginangpokpo Falls of Hantangang River, Pocheon', 'Pillow lava in Auraji, Pocheon' distributed along the Chugaryeong Fault System, 'Peridotite xenolith-bearing basalt in Jinchon-ri Baengnyeongdo Island, Ongjin', 'Columnar joint in Daljeon-ri, Pohang', 'Columnar joint in Yangnam, Gyeongju', and 'Columnar joint along Jungmun and Daepo Coasts, Jeju'. They ranged in age from the Cenozoic Neogene Miocene to the Quarternary Pleistocene. Based on the composition of major elements, Hantangang Basalt corresponded to trachybasalt, Daljeon Basalt to phonotephrite, Eoil Basalt to sub-alkaline basalt, and Daepodong Basalt to alkaline basalt. And in the composition of trace and rare earth elements, only Eoil Basalt showed the characteristics of arc basalt, while the others showed the characteristics of oceanic island basalt.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.