• Title/Summary/Keyword: Pneumatic brake system

Search Result 49, Processing Time 0.023 seconds

Experimental Study on the Pneumatic Characteristics of Brake System for Freight Car (화차 제동장치의 공기압 특성에 관한 실험적 연구)

  • 남성원;문경호;이동형;최경진;권석진
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.110-115
    • /
    • 1999
  • Experimental study is conducted to clarify the pneumatic characteristics of brake system for freight car. KNR(Korean National Railroad)'s freight cars have the laden-tare type control valve of brake system. But, laden-tare type control valve has some shortcomings to match the high speed freight car. Newly developed diaphragm type control valve is introduced to adopt freight car for speed-up. The test using the formated train set consisted of 21 cars is conducted to estimate the pneumatic braking efficiency of the mixed train set. From the results of experiment, the pressure characteristics of each brake cylinder show similar patterns qualitatively. But, in the case of release and brake application, quantitative pressure values of brake cylinder are different.

  • PDF

A Study on the Improvement of Release Application Characteristics of Pneumatic Brakes for Freight Train

  • Nam, Seong-Won;Kim, Hyeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.776-784
    • /
    • 2002
  • We have performed experimental studies for the improvements of pneumatic brake systems of freight trains. Currently, most of the freight trains operated by the Korean National Railroad have either empty-load or diaphragm type brake systems. In this study, appropriate methods that the air pressure characteristics in both type of brake systems are in accordance with each other have been investigated. We have also performed running tests using a 30 car-train set to design optimum capacity of a quick release valve. The test results show that the quick release valve is considerably effective in shortening the release time of the diaphragm type brake system. In the case of a normal brake application, the diaphragm type brake system with the quick release valve reduces the release time to 34% of that of the system without the quick release valve. This release time is almost equivalent to that of the empty-load type brake system. Accordance of braking performance in different types of brake systems in a train set is expected to prevent wheel flats and to reduce maintenance costs.

A Study on the Equalization of Pneumatic Brake-Release Performance between Various Freight Cars (이종(異種) 화물열차의 제동-완해 공기압성능 균등화에 관한 연구)

  • Nam, Seong-Won;Moon, Kyung-Ho;Lee, Dong-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.525-532
    • /
    • 2001
  • Experimental study has been conducted to clarify the pneumatic characteristics of brake system for freight train and enhance the performance of diaphragm valve. Empty-load and diaphragm brake systems are mainly used in the freight trains of KNR (Korean National Railroad). The train set is composed of thirty freight cars and diesel locomotive. From the experimental results, new quick release valve shortens release time after brake application. In case of normal brake application, the release time is short by 34% of that of original diaphragm control valve. It will be expected to assure brake-release application and reduce maintenance efforts.

  • PDF

Simulations for an ASCU of a Train Brake including a Pneumatic Model (공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF

A Study on the Pneumatic Characteristics of Brake System incorporated with Sliding and Diaphragm Valve (슬라이딩식과 막판식 제동장치의 공기압력 특성에 관한 연구)

  • 문경호;남성원;이동형;김형진
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.119-124
    • /
    • 2001
  • As the brake control valve of freight car, there are sliding valve and diaphragm one. In this study, we measured and analyzed pneumatic characteristics of brake system of the freight car by using real train experiment. The difference of the release time appears in the freight car incorporated with sliding and diaphragm valve respectively. We adapted quick release valve to reduce the difference of the release time and also found that this valve is useful for the purpose.

  • PDF

A Design of Brake Control System for Electrical Multiple Unit (전동차 제동제어장치 설계)

  • 이우동;최규형
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.151-156
    • /
    • 2000
  • The brake system is important to stop train safely. The train is sloped by regenerative brake and pneumatic brake which are continuously blended at service brake. When service is applied to train, it is controlled by train weight and brake command. The jerk limitation function is applied for impulseless smoothing braking. All brake applications in service condition have a function of the variable load control to keep the braking effort in proportion to each car load. All of control function are performed by brake controller. Therefore, we will propose the design of brake control system in order to control efficiently

  • PDF

The Design of Hydraulic Brake Control System used on Blending Brake Function (혼합제동기능을 이용한 유압제동 제어시스템 설계)

  • Lee, Woo-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1809-1812
    • /
    • 2013
  • The bogie of monorail vehicles applies rubber wheel system not steel wheel system. In addition, The structure of the bogie is very complicated because vehicle operates on the elevated road and vehicle drives with wrapping the guide way. When the monorail vehicle applies air brake system, lower device of vehicle may be complex and some devices may be limited. On the other hand, hydraulic brake equipment is compact and not weighing. Braking force is also outstanding compared with air brake so the hydraulic brake equipment is suitable for monorail vehicle. Also urban transit system such as monorail, applies mixed system both friction brake and electric brake in order to save electric energy. But application case of hydraulic brake in the country is very rare because hydraulic brake have difficulty in satisfaction of control requirement and maintenance. Therefore, this study suggests ways to design hydraulic brake system with blending brake for monorail vehicle and applies the ways to future monorail.

A Study on the Development of the Automatic Performance-Test-Bench for Drag Torque (드래그 토오크의 자동 성능시험기 개발에 관한 연구)

  • Lee, Seong-Ho;Mok, Hak-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.166-174
    • /
    • 2008
  • Recently, the automotive industry has been developing rapidly. With the progress parts of the automobile components need high quality and the reliability. Among them, braking unit is essential device, and acquire the reliability through the performance test of brake. This study was aimed to design the performance-test-bench to measure the drag torque which has effect on caliper in braking unit. In this progressive technology, it is vital importance to use hydraulic and pneumatic, and to combine test bench with instrumentation engineering technology. This system to construct the design of hydraulic and pneumatic circuit, interface technique between sensors and personal computer, data acquisition and display design, and integrated control are very important technology. Moreover, reliable data are obtained through vacuum system and hydraulic and pneumatic system by using of booster and brake master cylinder which are actually applied to automobile. Then, data signal detector sensors for speed, pressure and torque is attached on this system. Therefore, in this study, we designed a performance-test-bench by and we also made an total control system using personal computer which is more progressive and flexible method than existing PLC control.

A Decentralized Brake System for Railway Rolling Stocks Using the Adaptive Sliding Mode Control Scheme (적응 슬라이딩 모드 제어 기법을 이용한 철도차량 대차단위 제동시스템)

  • Park, Sung-Hwan;Lee, Ji-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1005-1013
    • /
    • 2009
  • In this paper, the performance improvement of a decentralized brake system for railway rolling stocks is investigated. In order to verify the effectiveness of the decentralized brake system, it is compared to the truck unit brake system which has only one control unit per a truck. The adaptive sliding mode control scheme is used to realize a robust anti-slip brake control system. Through computer simulations, it is verified that the decentralized brake system has better braking performance than the truck unit brake system.

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.