• Title/Summary/Keyword: Pneumatic Model

Search Result 201, Processing Time 0.028 seconds

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

The Vulnerability Assessment of Hydro-pneumatic Suspension of Ground Combat Vehicles Using Vulnerable Area Method and DMEA (취약면적법과 DMEA를 활용한 지상전투차량 유공압 현가장치의 취약성 평가)

  • Nam, Myung Hoon;Park, Kang;Park, Woo Sung;Yoo, Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • Vulnerability assesses the loss of major performance functions of GCV (Ground Combat Vehicles) when it is hit by enemy's shell. To decide the loss of major functions, it is determined what effects are on the performance of GCV when some components of GCV are failed. M&S (Modeling and Simulation) technology is used to vulnerability assessment. The hydro-pneumatic suspension is used as a sample part. The procedures of vulnerability assessment of the hydro-pneumatic suspension are shown as follows: 1) The components of the suspension are defined, and shot lines are generated evenly around the part. 2) The penetrated components are checked by using the penetration equation. 3) The function model of the suspension is designed by using IDEF0. 4) When the failure of the critical components of the suspension happens, its effect on the function of the suspension can be estimated using DMEA (Damage Mode and Effects Analysis). 5) The diagram of FTA (Fault Tree Analysis) is designed by exploiting DMEA. 6) The damage probability of the suspension is calculated by using FTA and vulnerable area method. In this paper, SLAP (Shot Line Analysis Program) which was developed based on COVART methodology. SLAP calculates the damage probability and visualizes the vulnerable areas of the suspension.

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.725-730
    • /
    • 2011
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, basic valve seat, rate of sealing diameter. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

Surface Inspection System of Bearing Inner/Outer Race using Machine Vision (비전을 이용한 베어링 내/외륜 면취 검사 시스템)

  • Yoon Ju-Young;Lee Young-Choon;Pang Doo-Yeol;Lee Seong-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-310
    • /
    • 2006
  • This paper is about the development of surface inspection of bearing inner and outer race using machine vision. Before this system is developed, most inspections are performed by workers' naked eye. To improve both the inconvenience and incorrectness, another new tester is introduced. This system has the three sections mainly. First one is the mechanism section which transfers bearing manufactured from previous process line to the testing process in plant. Another is the inspection system which is composed of two parts: computer vision and measurement system using laser diode which inspects the defects of the bearing inner or outer race. The other is the pneumatic cylinder part controlled by Programmable Logic Controller(PLC). The system which is developed shows favorable results, and that has the advantage of convenience and correctness compared to previous system.

  • PDF

Design and Control of a Wearable Robot (Wearable Robot Arm의 제작 및 제어)

  • Jeong, Youn-Koo;Kim, Yoon-Kyong;Kim, Kyung-Hwan;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

The research on reducing aeroacoustic noise using by Pneumatic Auxiliary Unit (공압장치를 이용한 공력 소음 저감 연구)

  • CHUNG, kyoungseoun;CHO, hyeongjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.119-123
    • /
    • 2013
  • We conduct the research for reducing aeroacoustic noise occurred when a vehicle operates in high speed situation without modifying the structural configuration such as deforming A-pillar's side curvature. We introduce PAU (Pneumatic Auxiliary Unit) which is a sort of air duct using intake air through radiator grill. According to our research, we can reduce overall noise levels around the surface of HSM (Hyundai Simplified Model). When a vehicleruns 100km/s, area-weighted acoustic power level (AWAPL) indicates 33dB without PAU. However with PAU, coverall AWAPL is decreased to 29dB which means we can improvesilentness approximately 12% compared to ordinary case. Moreover we conduct similar implementation to steering situation especially about yawing. In varioussituations, -10, 0, 10 degree of yawing, we observe 10% reduction in the upstream region of HSM but little increase in downstream region. It seems that inlet air overlap turbulent kinetic energy to surrounding flow. Even though downstream region's noise is louder than upstream region, overall AWAPL is still lower than conventional condition. We also apply this scheme to the real vehicle situation, then we get reasonable output which can support our research outputs.

  • PDF

Modeling and designing a power assist circuit using artificial muscle

  • Kagawa, Toshiharu;Fujita, Toshinori;Kawashima, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.121-126
    • /
    • 1993
  • Artificial muscle actuators are used in various fields. Especially, they are applied to the power assist circuit to make use of their characteristics. The purpose of this paper is to and analyze the power assist circuit using an artificial muscle actuator. As a result, it is found that the operating feeling of the power assist circuit depends mainly on the flow gain of the pneumatic servo valve. The required flow gain is calculated from the proposed model, and the experimental results agreed with the calculated results.

  • PDF

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.