• Title/Summary/Keyword: Pluronic F127

Search Result 35, Processing Time 0.021 seconds

Preparations and Release Property of Poly(ε-caprolacton)/ethyl cellulose Microcapsule Containing Pluronic F127 (Pluronic F127을 함유하는 Poly(ε-caprolacton)/ethyl cellulose 마이크로 캡슐의 제조 및 방출 특성)

  • Hong, Yeon Ji;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.632-637
    • /
    • 2009
  • Poly(${\varepsilon}-caprolacton$)/ethyl cellulose (PCL/EC) microcapsules containing pluronic F127 were prepared by a spray drying method. The aqueous phase, 20% of pluronic F127 was dissolved in distilled water, and the organic phase, 5% of PCL and EC were dissolved in dichloromethane. The microcapsules were obtained by spray drying the water-in-oil (W/O) emulsion. According to the data of scanning electron microscopy and particle analyzer, tens of micro size microcapsules were observed. On a differential scanning calorimeter, the phase transition temperatures of microcapsules were observed and they were found around those of pluronic F127 and poly(${\varepsilon}-caprolacton$), which were the main components of the microcapsules. At the range of $30{\sim}45^{\circ}C$, temperature-dependent release properties were investigated using fluorescein isothicyanate-dextran (FITC-dextran) and blue dextran as a model drug. When the temperature was increased, the degree of release of microcapsule was also increased. FITC-dextran, the relative low molecular weight, was more released than blue-dextran.

The Aggregation State and Hemolytic Activity of Nystatin (니스타틴의 응집 특성 및 용혈 활성)

  • Yu, Bong-G.
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • The aggregation behavior of nystatin (NYS) in the presence of pluronic F127, triblock copolymer of poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO), was measured and correlated with hemolytic activity. Antifungal activity was also studied using Saccharomyces cerevisiae as a model strain. The critical aggregation concentrations (CAC) of the drug were 50.1, 108.0, 134.2, 154.3, and $217.9\;{\mu}M$ at 0.1%, 0.5%, 1.0%, 1.5%, and 2.0% pluronic F127 solution, respectively. The levels of NYS required to start lysis of erythrocytes were about 80, 100, 125, 150, and $200\;{\mu}M$ at 0.1%, 0.5%, 1.0%, 1.5%, and 2.0% pluronic F127 solution, respectively. It was $50\;{\mu}M$ in the absence of the polymer. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of NYS-pluronic F127 lyophilizate were same at $3\;{\mu}g/ml$, while MIC and MFC of pure NYS are $3\;{\mu}g/ml$ and $12\;{\mu}g/ml$, respectively. By modulating the aggregation behavior of NYS, pluronic F127 was able to reduce the toxicity of the drug without compromising the MIC and MFC.

  • PDF

In vivo Osteogenesis of Cultured Human Periosteal-derived Cells and Polydioxanone/Pluronic F127 Scaffold (인간 골막기원세포와 Polydioxanone/Pluronic F127 담체를 이용한 골형성)

  • Park, Bong-Wook;Lee, Jin-Ho;Oh, Se-Heang;Kim, Sang-June;Hah, Young-Sool;Jeon, Ryoung-Hoon;Maeng, Geun-Ho;Rho, Gyu-Jin;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Purpose: The purpose of this study is to examine in vivo osteogenesis of cultured human periosteal-derived cells and polydioxanone/pluronic F127 scaffold. Methods: Two one-year-old miniature pigs were used in this study. $2{\times}10^6$ periosteal-derived cells in 1 mL medium were seeded by dropping the cell suspension into the polydioxanone/pluronic F127 scaffold. These cell-scaffold constructs were cultured in osteogenic Dulbecco's modified Eagle's medium for 7 days. Under general anesthesia with azaperone and tiletamine-zolazepam, the mandibular body and ramus of the pigs were exposed. Three bony defects were created. Polydioxanone/pluronic F127 scaffold with periosteal-derived cells and the scaffold only were implanted into each defect. Another defect was left empty. Twelve weeks after implantation, the animals were sacrificed. Results: New bone formation was clearly observed in the polydioxanone/pluronic F127 scaffold with periosteal-derived cells. Newly generated bone was also observed in the scaffold without periosteal-derived osteoblasts and empty defect, but was mostly limited to the periphery. Conclusion: These results suggest that cultured human periosteal-derived cells have good osteogenic capacity in a polydioxanone/pluronic F127 scaffold, which provides a proper environment for the osteoblastic differentiation of these cells.

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.

Effect of Added Pluronics on fabrication of Poly(L-lactic acid) Scaffold via Thermally-Induced Phase Separation (상 분리법을 이용한 Poly(L-lactic acid) Scaffold제조에 미치는 Pluronics의 영향)

  • 김고은;김현도;이두성
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.821-828
    • /
    • 2002
  • Regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffolds with pore size of 10∼300 ㎛ were fabricated through thermally induced phase separation of a PLLA-dioxane-water ternary system in the presence of a small amount of Pluronics. Addition of Pluronics to the ternary system raised the cloud-point temperature curve in the order of P-123< F-68< F-127. The Pluronics act as nuclei for the phase separation. This assistance is enhanced with increasing length of the hydrophilic PEO blocks in the Pluronics molecules. Liquid-liquid spinodal phase separation was induced at higher temperatures in the systems containing Pluronics because the spinodal region is raised to higher temperature. The absorption of Pluronics onto the interface stabilizes a macro scale structure and increases the interconnection of pores.

OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS IN A THREE DIMENSIONAL POLYDIOXANONE/PLURONIC F127 SCAFFOLD (Polydioxanone/pluronic F127 담체에 유입된 골막기원세포의 조골활성)

  • Lee, Jin-Ho;Oh, Se-Heang;Park, Bong-Wook;Hah, Young-Sool;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.478-484
    • /
    • 2009
  • Three-dimensional porous scaffolds play an important role in tissue engineering strategies. They provide a void volume in which vascularization, new tissue formation, and remodeling can occur. Like any grafted materials, the ideal scaffold for bone tissue engineering should be biocompatible without causing an inflammatory response. It should also possess biodegradability, which provides a suitable three-dimensional environment for the cell function together with the capacity for gradual resorption and replacement by host bone tissue. Various scaffolds have already been developed for bone tissue engineering applications, including naturally derived materials, bioceramics, and synthetic polymers. The advantages of biodegradable synthetic polymers include the ability to tailor specific functions. The purpose of this study was to examine the osteogenic activity of periosteal-derived cells in a polydioxanone/pluronic F127 scaffold. Periosteal-derived cells were successfully differentiated into osteoblasts in the polydioxanone/pluronic F127 scaffold. ALP activity showed its peak level at 2 weeks of culture, followed by decreased activity during the culture period. Similar to biochemical data, the level of ALP mRNA in the periosteal-derived cells was also largely elevated at 2 weeks of culture. The level of osteocalcin mRNA was gradually increased during entire culture period. Calcium content was detactable at 1 week and increased in a time-dependent manner up to the entire duration of culture. Our results suggest that polydioxanone/pluronic F127 could be a suitable scaffold of periosteal-derived cells for bone tissue engineering.

Peripheral Nerve Regeneration by Asymmetrically Porous PLGA/Pluronic F127 Nerve Guide Conduit

  • Oh, Se-Heang;Kim, Jun-Ho;Song, Kyu-Sang;Jeon, Byeong-Hwa;Lee, Il-Woo;Lee, Jin-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.181-181
    • /
    • 2006
  • We developed a novel method to fabricate a nerve guide conduit (NGC) with the porosity of submicron pore sizes (to prevent fibrous tissue infiltration) and hydrophilicity (for effective oxygen and nutrient permeation) using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method designed by our laboratory. It was recognized that the hydrophilized PLGA/F127 (3 wt%) tube can be a good candidate as a NGC from the analyses of its morphology, mechanical strength, hydrophilicity, model nutrient permeability and in vivo nerve regeneration behavior using a rat model.

  • PDF

Synthesis of Core@Shell-Structured Silicon@Carbon Nanoparticles by One-Pot Spray Pyrolysis Process and Application as Anode Materials for Lithium-Ion Batteries (단일 분무 열분해 공정을 이용한 코어@쉘 구조의 Si@C 나노 분말 합성 및 리튬 이온 전지 음극소재 적용)

  • Seong Ho Jung;Jae Seob Lee;Jung Sang Cho
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.220-227
    • /
    • 2024
  • As the demand for lithium-ion batteries with high capacity and high energy density has rapidly increased, silicon anodes (theoretical capacity = 3,570 mA h g-1) have garnered attention as potential replacements for conventional graphite anodes (theoretical capacity = 372 mA h g-1). However, silicon anodes suffer from severe volume expansion (~360%) during lithiation, low ionic conductivity (10-14 ~ 10-13 cm2 S-1), and low electrical conductivity (10-2 S cm-1), resulting in poor cycling and rate performance. To address these issues, this study synthesized core@shell-structured silicon@carbon nanoparticles (Si@C NPs) via a one-pot spray pyrolysis process using Pluronic-F127. Pluronic-F127 in the spray solution contributes to the synthesis of nanoparticles by preventing the formation of silicon nanoparticle/dextrin agglomerates and by undergoing pyrolysis simultaneously. Additionally, dextrin derived amorphous carbon was coated on the surface of the silicon nanoparticles to act as an electron transport pathway within the anodes and enhance the electrical contact between the silicon nanoparticles. The Si@C NPs exhibited a discharge capacity of 1,912 mA h g-1 after 50 cycles at 1.0 A g-1 and high rate capabilities (discharge capacity of 1,493 mA h g-1 at 3.0 Ag-1). The silicon@carbon composite nanoparticle synthesis strategy based on the spray pyrolysis process presented in this study is expected to offer a new direction for improving the performance of silicon anode materials.

Preparation and Properties of Modified PHEMA Hydrogels Containing Thermo-responsive Pluronic Component

  • Hong, Kwang-Hyun;Jeon, Young-Sil;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photo initiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.

Study of the enzymatic action of the chymopapain using pluronic based nano-carrier system on the cadaveric nucleus pulposus tissue (플루로닉(pluronic) 기반의 나노운반체(nano-carrier)에 충진된 카이모파파인(chymopapain)의 척추 추간판 조직내 작용성에 관한 연구)

  • Choi, Won Il;Tae, Gi Yoong;Hong, Young Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.585-592
    • /
    • 2015
  • The objective of this study is to determine if when chymopapain is loaded onto a nano-carrier, an injection of it reduces the spreading range of the drug within the discs. The materials for the experiment, which were conducted for three weeks, included fifteen intervertebral discs taken from two cadavers, which were divided according to the types of injected chymopapain solutions as follows: ordinary chymopapain group and nano-carrier system group. The nano-carrier system group was again divided into two subgroups according to the types of pluronics, the basic material for the nano-carriers: Pluronic F 127(DA-PF 127) in the nano-carrier group and Pluronic F 68(DA-PF 68) in the nano-carrier group. The results showed that the action of chymopapain using a pluronic-based nano-carrier system was localized around the center of the injection site instead of broad spreading, compared to that of the ordinary chymopapain group (p<0.01). This characteristic suggests a possible application to effective agents for minimally invasive spinal treatment through which disc lesions were removed selectively.