Preparations and Release Property of Poly(ε-caprolacton)/ethyl cellulose Microcapsule Containing Pluronic F127

Pluronic F127을 함유하는 Poly(ε-caprolacton)/ethyl cellulose 마이크로 캡슐의 제조 및 방출 특성

  • Hong, Yeon Ji (School of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (School of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 홍연지 (강원대학교 생물소재공학전공) ;
  • 김진철 (강원대학교 생물소재공학전공)
  • Received : 2009.07.10
  • Accepted : 2009.08.11
  • Published : 2009.12.10

Abstract

Poly(${\varepsilon}-caprolacton$)/ethyl cellulose (PCL/EC) microcapsules containing pluronic F127 were prepared by a spray drying method. The aqueous phase, 20% of pluronic F127 was dissolved in distilled water, and the organic phase, 5% of PCL and EC were dissolved in dichloromethane. The microcapsules were obtained by spray drying the water-in-oil (W/O) emulsion. According to the data of scanning electron microscopy and particle analyzer, tens of micro size microcapsules were observed. On a differential scanning calorimeter, the phase transition temperatures of microcapsules were observed and they were found around those of pluronic F127 and poly(${\varepsilon}-caprolacton$), which were the main components of the microcapsules. At the range of $30{\sim}45^{\circ}C$, temperature-dependent release properties were investigated using fluorescein isothicyanate-dextran (FITC-dextran) and blue dextran as a model drug. When the temperature was increased, the degree of release of microcapsule was also increased. FITC-dextran, the relative low molecular weight, was more released than blue-dextran.

Pluronic F127을 함유한 poly(${\varepsilon}-caprolacton$) / ethyl cellulose (PCL/EC) 마이크로 캡슐을 분무건조법으로 제조하였다. 20% (w/v)의 pluronic F127 수용액을 수상으로, 5% (w/w)의 PCL/EC이 녹아있는 디클로로메탄(dichloromethane)을 유기상으로 이용하여 water-in-oil (W/O) 에멀젼을 제조하였고, 이를 분무건조하여 마이크로 캡슐을 얻어낼 수 있었다. 주사전자현미경과 입도분석기로 분석한 결과, 수 마이크로부터 수십 마이크로 크기의 마이크로 캡슐이 형성을 확인되었다. 시차주사열량측정기로 마이크로 캡슐의 상전이 온도를 조사한 결과, 마이크로 캡슐 제조 시 사용된 고분자들의 상전이 온도가 관찰되었다. 마이크로 캡슐의 온도 의존적 방출 특성은 $30{\sim}45^{\circ}C$에서 관찰하였으며, 수용성 염료인 fluorescein isothiocyanate-dextran (FITC-dextran)과 blue dextran을 방출모델시약으로 하였다. 온도가 증가할수록 마이크로 캡슐로부터 방출되는 양이 증가하였으며, 방출모델시약의 분자량이 작을수록 더 많이 방출되었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. D. C. Drummond, M. Zignani, and J. C. Leroux, Prog. Lipid Res., 39, 209 (2000)
  2. M. Hrub\acute{y}, \check{C}. Ko\check{n}\acute{a}k, K., and Ulbrich, J. Control. Release, 103, 137 (2005) https://doi.org/10.1016/j.jconrel.2004.11.017
  3. P. Gupta, K. Vermani, and S. Garg, Drug Discov. Today, 7, 569 (2002) https://doi.org/10.1016/S1359-6446(02)02255-9
  4. K. Hiraka, M. Kanehisa, M. Tamai, and S. Asayama, Colloids Surf. B., 67, 54 (2008) https://doi.org/10.1016/j.colsurfb.2008.07.014
  5. K. Kono, R. Nakai, K. Morimoto, and T. Takagishi, Biochim. Biophys. Acta, 1416, 239 (1999) https://doi.org/10.1016/S0005-2736(98)00226-0
  6. J. H. Choi, H. Y. Lee, J. C. Kim, and Y. C. Kim, J. Ind. Eng. Chem., 13, 380 (2007)
  7. J. H. Choi, H. Y. Lee, and J. C. Kim, J. Appl. Polym. Sci., 110, 117 (2008) https://doi.org/10.1002/app.28620
  8. J. Hua, Y. Liu, J. Hu, Q. Wang, Z. Gong, and X. Guo, J. Appl. Polym. Sci., 74, 2457 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2457::AID-APP14>3.0.CO;2-X
  9. J. J. Escobar-Ch\acute{a}vez, M. L\acute{o}pez-Cervantes, A. Naik, Y. N. Kalia, D. Quintanar-Guerrero, and A. Ganern-Quintanar, J. Pharm. Pharmaceut. Sci., 9, 339 (2006)
  10. S. Miyazaki, C. Yokouchi, T. Nakamura, N. Hashiguchi, W. M. Hou, and M.Takada, Chem. Pharm. Bull., 34, 1801 (1986) https://doi.org/10.1248/cpb.34.1801
  11. K. Morikawa, F. Okada, M. Hosokawa, and H. Kobayashi, Cancer Res., 47, 37 (1987)
  12. K. Morimoto, T. Takeeda, Y. Nakamoto, and K. Morisaka, Int. J. Pharm., 12, 147 (1982) https://doi.org/10.1016/0378-5173(82)90114-4
  13. C. Koller and P. Buri, S. T. P. Pharma., 3, 115 (1987)
  14. H. J. Chung, Y. Lee, and T. G. Park, J. Control. Release, 127, 20 (2008)
  15. Y. J. Shin, D. H. Yang, M. H. Oh, Y. S. Yoon, and J. S. Shin, J. Ind. Eng. Chem., 15, 238 (2009) https://doi.org/10.1016/j.jiec.2008.09.009
  16. J. C. Kim, H. Y. Lee, M. H. Kim, H. J. Lee, H. Y. Kang, and S. M. Kim, Colloids Surf. B., 52, 52 (2006) https://doi.org/10.1016/j.colsurfb.2006.07.001
  17. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  18. H. K. Kim and T. G. Park, Int. J. Pharm, 229, 107 (2001) https://doi.org/10.1016/S0378-5173(01)00852-3
  19. J. C. Jeong, J. Lee, and K. Cho, J. Control. Release, 92, 249 (2003) https://doi.org/10.1016/S0168-3659(03)00367-5
  20. S. Y. Kim, J. C. Ha, and Y. M. Lee, J. Control. Release, 65, 345 (2000) https://doi.org/10.1016/S0168-3659(99)00207-2
  21. W. Gunder, B. H. Lippold, and B. C. Lippold, Eur. J. Pharm. Sci., 3, 203 (1995) https://doi.org/10.1016/0928-0987(95)00009-3
  22. Y. Fukumori, H. Ichikawa, H. Tokumitsu, M. Miyamoto, K. Kono, R. Kanamori, Y. Akineand, and N. Tokita, Chem. Pharm. Bull., 41, 1144 (1993) https://doi.org/10.1248/cpb.41.1144
  23. G. S. Rekhi and S. S. Jambhekar, Drug Dev. Ind. Pharm., 21, 61 (1995) https://doi.org/10.3109/03639049509048096
  24. H. T. Davis, Colloids Surf. A., 91, 9 (1994) https://doi.org/10.1016/0927-7757(94)02929-6
  25. C. S. Yong, J. S. Choi, Q. Z. Quan, J. D. Rhee, C. K. Kim, and S. J. Lim, Int. J. Pharm., 226, 195 (2001) https://doi.org/10.1016/S0378-5173(01)00809-2
  26. J. Raymond, A. Metcalfe, I. Salazkin, and A. Schwarz, Biomaterials, 25, 3983 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.085
  27. G. E. Newby, I. W. Hamley, S. M. King, C. M. Martin, and N. J. Terrill, J. Colloid Interface Sci., 329, 54 (2009) https://doi.org/10.1016/j.jcis.2008.09.054