• Title/Summary/Keyword: microcapsules

Search Result 252, Processing Time 0.027 seconds

Effect of autonomic microcapsules on mechanical properties of structural materials (자가치료용 마이크로캡슐이 구조재의 기계적 특성에 미치는 영향)

  • 소진호;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.508-511
    • /
    • 2004
  • This study focused on the effect of autonomic microcapsules on the mechanical properties of structural material. Several types of microcapsules with healing agents were manufactured by varying agitation speed of high speed stirrer. The size distribution of microcapsules was measured by a particle size analzer. The epoxy specimens embedded with microcapsules were manufactured and the degree of cure of such epoxy specimen was measured by a differential scanning calorimetry. The tensile modulus and tensile strength in epoxy specimens embedded with microcapsules were evaluated in order to investigate the effects of microcapsules on mechanical properties of structural materials. The configuration of microcapsules and morphology of fracture surfaces for the epoxy specimen were examined by an optical microcope and a scanning electron microscope. According to the results, tensile strength of the epoxy specimen embedded with microcapsules was indicated a little reduction, but tensile modulus was not much affected on microcapsules.

  • PDF

Dissolution Characterstics of Indomethacin Microcapsules Prepared Using Gelatin-Gum Arabic Complex Coacervation (젤라틴-아리비아고무를 써서 製造한 인도메타신 마이크로캅셀의 용출 특성)

  • Ku, Young-Soon;Kim, Hwa-Yeon
    • YAKHAK HOEJI
    • /
    • v.28 no.4
    • /
    • pp.223-229
    • /
    • 1984
  • Microcapsules of indomethacin were prepared by the complex coacervation technique using gelatin-gum arabic as the wall-forming material. The effects of varying drug-to-matrix ratios and formalization time, and hydroxy propyl cellulose (HPC) added on the release of drug from microcapsules were studied. As the amount of wall-forming material increased, the drug content in the microcapsules decreased and the release of drug from microcapsules was retarded. The drug content was lower in the HPC added microcapsules than that in the microcapsules was retarded. The drug content was lower in the HPC added microcapsules than that in the microcapsules without HPC and the microcapsules with 1:4 drug-to-matrix ratio showed the slowest release. The release rate of the drug from microcapsules with 1:2 drug-to-matrix was delayed according to the increase of formalization time and the microcapsules formalized for 24hr showed ratio the most retardation.

  • PDF

The Production of Microcapsules containing Fragrant material (방향물질을 함유한 마이크로캡슐 제조)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.5
    • /
    • pp.684-690
    • /
    • 2002
  • The microcapsules containing fragrant material as functional compound were produced by in-situ polymerization. The prepolymer was made from urea-formaldehyde(UF) and melamine-formaldehyde(MF) as wall materials of microcapsules. The effects of wall material, dispersing agent and ratio of wall material to core material on the mean diameter variation were investigated. Thermal efficiency and release behavior of microcapsules were measured. The resultant UF and MF microcapsules are capable of preserving fragrant oil for long self-life.

Thermal Stability of Autonomic Microcapsules with Healing Agent (자가치료용 마이크로캡슐의 열적 안정성 연구)

  • 박희원;윤성호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • This study dealt with autonomic microcapsules with the healing agent for damage repair of the composite structures. Autonomic microcapsules were made of a urea-formaldehyde resin for shell of microcapsule and a DCPD for the healing agent. Thermal analysis was conducted by using a DSC and a TGA for the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. According to the results, autonomic microcapsules were verified to be so thermally stable that the healing agent was kept inside the microcapsule until the shell of microcapsules were burned out.

  • PDF

The Preparation of Rosewood Microcapsules by Interfacial Polymerization and Aromatic, Antimicrobial Finishing of Wool Fabric (계면중합에 의한 로즈우드 마이크로캡슐 제조 및 방향.항균가공)

  • 김현진;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.2
    • /
    • pp.200-208
    • /
    • 2003
  • The purpose of this study is to propose scientific data and to develop complex\ulcornermultifunctional fibers by applying microcapsules containing rosewood oil on wool fabric. Polyurea was used as wall material of microcapsules. The parameters for adoptable condition are 20min of agitation time, 5000rpm of agitation speed, 4% of emulsifier concentration according to the observation with SEM and particle analyzer. The melting peak of microcapsules was shown to be 280$^{\circ}C$ The amount of released rosewood from microcapsules at 25$^{\circ}C$ was below 1 % and at 40% was below 3%. Therefore, polyurea microcapsules is capable of preserving rosewood oil for long self-life at normal temperature. Antimicrobial activity to dry cleaning and ironing cycle of wool fabric treated with microcapsules were maintained.

Design rules for creating sensing and self-actuating microcapsules

  • Kolmakov, German V.;Yashin, Victor V.;Balazs, Anna C.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.199-211
    • /
    • 2011
  • Using computational modeling, we design a pair of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can undergo autonomous, directed motion. In the simulations, signaling microcapsules release "agonist" particles, while target microcapsules release "antagonist" particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution. Additionally, the released nanoscopic particles can bind to the underlying substrate and thereby create adhesion gradients that propel the microcapsules to move. Hydrodynamic interactions and the feedback mechanism provided by the dissolved particles are both necessary to achieve the cooperative behavior exhibited by these microcapsules. Our model provides a platform for integrating both the spatial and temporal behavior of assemblies of "artificial cells", and allows us to design a rich variety of structures capable of exhibiting complex dynamics. Due to the cell-like attributes of polymeric microcapsules and polymersomes, material systems are available for realizing our predictions.

Microencapsulation of Isoprinosine with Ethylcellulose

  • Kim, Chong-Kook;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 1991
  • Isoprinosine, an antiviral agent with a bitter taste, has been clinically used up to a maximum of 4 g daily in 4-8 doses. In this investigation, isoprinosine was microencapsulated with ethylcellulose 22 cps, 50 cps and 100 cps by means of polymer deposition from cyclohexane through temperature change. Complete removal of cyclohexane from the microcapsules was necessary, since ethylcellulose-coated microcapsules obtained from cyclohexane medium were heavily solvated with cyclohexane and formed lumps even after drying. The displacement of cyclohexane by n-hexane during isolation of microcapsules (Method III) or the freezing of the anal-washed microcapsules before drying (Mothod II) provided the dried products which were more discrete microcapsules than those which were simply dried in the air overnight (Method I). Method III was especially the most effective procedure in preparing finer and more discrete microcapsules. The drug-release from microcapsules was influenced by the ratio of core to wall, the viscosity grade of ethylcellulose and the overall microcapsule size. The release rate was adequately fitted to both the first-order and the diffusion-controlled processes. It is therefore possible to design the release-controlled microcapsules with ethylcellulose of different viscosity along with various core to wall ratio.

  • PDF

The Preparation of Controlled-Release Microcapsules for Captopril and Their Dissolution Characteristics (제어 방출협 캅토프릴 마이크로캅셀의 제조 및 용출 특성)

  • Choi, Hyun-Soon;Ge, Jiang;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The captopril microcapsules were prepared and were investigated by measuring their size distribution using Scanning Electron Microscopy(SEM) and dissolution of captopril. Cetyl alcohol microcapsules prepared by emulsion melted-cooled method with various ratios of drug to cetyl alcohol were spherical and uniform. The release rate of cetyl alcohol microcapsules was decreased proportionally as the content of cetyl alcohol increased but, the particle size of microcapsules was increased. The surface of cetyl alcohol microcapsules was comparatively rough as drug content increased. Pellet type microcapsules were prepared using fluidized-bed coating system by spraying captopril solution on nonpareil-seeds followed by applying $Eudragit^{\circledR}$ RS solution containing propylene glycol as a plasticizer. The release rate of drug from pellet type microcapsules decreased as the content of $Eudragit^{\circledR}$ RS increased.

  • PDF

Manufacturing Process of Microcapsules for Autonomic Damage Repair of Polymeric Composites (폴리머 복합재의 자가치료용 마이크로캡슐 제조공정 연구)

  • ;;;;M.R. Kessler;S.R. White
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.32-39
    • /
    • 2002
  • This study focused on the introduction of processing procedure for microcapsules loaded with the healing agent and then microcapsules with the healing agent were manufactured by experiments. The DCPD (dicyclopentadiene) was used for the healing agent and the shell of microcapsules was consisted of urea-formaldehyde resin. The magnitude and the site distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal analysis was conducted by using a DSC fur the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. Also thermal stability was investigated by using a TGA under continuous and isothermal heating conditions far the healing agent, microcapsules without the healing agent, microcapsules with the healing agent. According to the results. microcapsules with the healing agent were verified to be so thermally stable that the healing agent could not evaporate until the shell of microcapsules were burned.

Studies on the Development for Sustained Release Preparation (II):Preparation and Evaluation of Eudragit Microcapsules of Sodium Naproxen

  • Shin, Sang-Chul;Lee, Keong-Ran
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.50-56
    • /
    • 1993
  • The microencapsulation of sodium naproxen with Eudragit. RS was studied by coacrtvation/phase separation process using Span 80 in mineral oil/acetone system. Various factors which affect the mciroencapsulation, e.g., stirring speed, and surfactant concentraction, Eudagit RS concentration and loading drug amounts were examined. For the evaluation of the prepared microcapsules, release rate, particle size distribution and surface appearance as well as in vivo test were carried out. The addition of n-hexane and freezing of microcapsules accelerated the hardening of microcapsules. The optimum concentration of Span 80 ti prepare the smallest microcapsules was the same value with the CMC of Span 80 in solvent system. When 1.5% (w/w) Span 80 was used, the smallest microcapsules were formed $(30.02\pm5.05\mu$ in diameter) belonging to the powder category showing smooth, round and uniform surface. The release of sodium naproxen was retarded by microencapsulation with Eudragit RS. The Eudragit RS microcapsules showed significantly increased AUC and MRT and deceased Cl/F in rabbits.

  • PDF