• Title/Summary/Keyword: Plunger Pump

Search Result 34, Processing Time 0.016 seconds

A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel (DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Hyun-Chul;Kang, Woo;Kim, Byoung-Soo;Park, Sang-Hoon;Chung, Jae-Woo;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Improvement of the Lubrication Characteristics of Fuel Injection Pump for Medium-Speed Diesel Engines: Part II - Application of Grooves (연료분사펌프의 윤활 특성 개선: 제2부 - 그루브의 적용)

  • Hong, Sung-Ho;Lee, Bora;Cho, Yongjoo
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.213-220
    • /
    • 2015
  • This study evaluates the effect of grooves on the stem part of a plunger on the lubrication characteristics of a fuel injection pump (FIP) by using hydrodynamic lubrication analysis. The current study uses the two-dimensional Reynolds equation to evaluate the changes in lubrication characteristics with variations in clearance, viscosity, and grooves for a laminar, incompressible, and unsteady state flow. This study investigates the lubrication characteristics by comparing the dimensionless minimum film thickness or the film parameter, which is the ratio of the minimum film thickness to surface roughness. The analysis method for the groove section differs depending on the depth of the groove. For instance, in the case of a shallow groove, the film thickness equation considers the depth of the groove, while in the case of a deep grove, it considers the flow continuity. The lubrication characteristics of the FIP are more sensitive to changes in the groove width than to changes in other design variables. Moreover, the application of a groove is more effective under low viscosity conditions. The smaller the distance from the edge of the stem part to the first groove in the case of shallow grooves, the better are the lubrication characteristics of the FIP. In contrast, in the case of deep grooves, the lubrication characteristics of the FIP improve as the distance increases. The application of shallow grooves is more effective for improving the lubrication characteristics than the application of deep grooves.

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

A Study on Development of Hot Forged Component of Hot Tool Steel DH32 (열간공구강 DH32 소재의 열간단조품 개발에 관한 연구)

  • Jang, Jin-Hyung;Kim, Hyun-Su;Kim, Jong-Hyeon;Kim, Hyun-Pil;Kim, Young-Jo
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • Hot tool steel, in general, has not been used as a material in hot forging. However such a hot tool steel is recently applied to forging materials by recent forging technology. DH32 is known as a kind of hot tool steels, which is developed for characteristics of excellent strength and toughness in high temperature. Feasibility of DH32 to hot forging material has been researched to develop the hot forging technology of a plunger used for a large-sized marine fuel pump. Hot compression experimental works were performed to investigate the hot strain characteristic of DH32 and with the experimental results FE simulations were also conducted for the design of forging processes and preform. It is found out through the hot compression experimental works that DH32 has a hot brittleness at more than $1150^{\circ}C$.

  • PDF