• Title/Summary/Keyword: Plume modelling

Search Result 18, Processing Time 0.026 seconds

The Modelling of Carbon Plume by Pulsed-laser ablation Method (PLAD법에 의한 탄소 플라즈마의 모델링)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.41-45
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher. However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

  • PDF

Water Quality Modeling and Response Assessment in the Yellow Sea and the East China Sea (황해 및 동중국해의 수질예측과 응답성 평가)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.445-460
    • /
    • 2012
  • In order to evaluate and predict the environmental impact of the low-trophic-level ecosystem to environmental changes in the Yellow Sea and the East China Sea, an ecological modelling study was undertaken. Simulation results of average distribution patterns and concentrations of water quality factors during the summer by the model were acceptable. Phytoplankton and remineralization rate of organic matter were very important parameters by a sensitivity analysis. Water quality factors showed high values in the estuary of the Yangtze River and in the West and South Sea of Korea and low values in the central area of the Yellow Sea. There is a plume of high values, especially nutrients, off the mouth of the Yangtze that expands or contracts with changes in the discharge strength. Characteristics of responses of water quality factors vary for different scenarios of environmental change, such as land-based pollution sources and atmospheric forcing. It is suggested that changes of light intensity, discharges of input sources, and wind play an important role in the marine ecosystem.

Improvement of hot work environment in the curing processes of a tire manufacturing company (타이어 제조공장 가류공정의 온열환경 개선에 관한 연구)

  • Lim, Jung-ho;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

Source term estimation using least squares method in a radiological emergency (원자력 비상시 최소자승법을 이용한 선원항의 추정)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • Atmospheric dispersion modelling has been widely used to predict the fate and transport of radioactive or toxic materials released from nuclear facilities which is an unlikely accidental event. To improve the forecasting performance of the dispersion model, it is required that source rate and dispersion characteristics must be defined appropriately. Generally, source term of the radioactive materials is much uncertain at the early phase of an accidental event. In this study, we computed the source rate with the experimental field data monitored at the Yeoung-Kwang nuclear site and obtained the optimal source rate to minimize the errors between the measured concentrations and the computed ones by the Gaussian plume model. Computed source term showed a good result within 24% of the artificially released source rate.

Preliminary numerical study on hydrogen distribution characteristics in the process that flow regime transits from jet to buoyancy plume in time and space

  • Wang, Di;Tong, Lili;Liu, Luguo;Cao, Xuewu;Zou, Zhiqiang;Wu, Lingjun;Jiang, Xiaowei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1514-1524
    • /
    • 2019
  • Hydrogen-steam gas mixture may be injected into containment with flow regime varying both spatially and transiently due to wall effect and pressure difference between primary loop and containment in severe accidents induced by loss of coolant accident. Preliminary CFD analysis is conducted to gain information about the helium flow regime transition process from jet to buoyancy plume for forthcoming experimental study. Physical models of impinging jet and wall condensation are validated using separated effect experimental data, firstly. Then helium transportation is analyzed with the effect of jet momentum, buoyancy and wall cooling discussed. Result shows that helium distribution is totally dominated by impinging jet in the beginning, high concentration appears near gas source and wall where jet momentum is strong. With the jet weakening, stable light gas layer without recirculating eddy is established by buoyancy. Transient reversed helium distribution appears due to natural convection resulted from wall cooling, which delays the stratification. It is necessary to concern about hydrogen accumulation in lower space under the containment external cooling strategy. From the perspective of experiment design, measurement point should be set at the height of connecting pipe and near the wall for stratification stability criterion and impinging jet modelling validation.

Gravity monitoring of $CO_2$ storage in a depleted gas filed: A sensitivity study (채굴후 가스전내 $CO_2$ 저장소의 중력 모너터링: 감도 연구)

  • Sherlock, Don;Toomey, Aoife;Hoversten, Mike;Gasperikova, Erika;Dodds, Kevin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • In 2006, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) plans to undertake (subject to receiving the necessary approvals) a Pilot program for $CO_2$ storage within a depleted gas reservoir. The Otway Basin Pilot Program (OBPP) aims to demonstrate that subsurface $CO_2$ storage is both economically and environmentally sustainable in Australia. This will be the first $CO_2$ storage program in the world to utilise a depleted gas reservoir and, hence, the experience gained will be a valuable addition to the range of international $CO_2$ storage programs that are underway or being planned. A key component of the OBPP is the design of an appropriate geophysical monitoring strategy that will allow the subsurface migration of the $CO_2$ plume to be tracked and to verify that containment has been successful. This paper presents the results from modelling the predicted gravity response to $CO_2$ injection into the Otway Basin reservoir, where the goal was to determine minimum volumes of $CO_2$ that may be detectable using non-seismic geophysical techniques. Modelling results indicate that gravity measurements at 10 m spacing within the existing observation well and the planned $CO_2$ injection well would provide excellent vertical resolution, even for the smallest $CO_2$ volume modelled (10000 tonnes), but resolving the lateral extent of the plume would not be possible without additional wells at closer spacing.

Development of an Accident Consequence Assessment Code for Evaluating Site Suitability of Light- and Heavy-water Reactors Based on the Korean Technical Standards

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kil, A Reum;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.368-372
    • /
    • 2016
  • Background: Methodologies for a series of radiological consequence assessments show a distinctive difference according to the design principles of the original nuclear suppliers and their technical standards to be imposed. This is due to the uncertainties of the accidental source term, radionuclide behavior in the environment, and subsequent radiological dose. Both types of PWR and PHWR are operated in Korea. However, technical standards for evaluating atmospheric dispersion have been enacted based on the U.S. NRC's positions regardless of the reactor types. For this reason, it might cause a controversy between the licensor and licensee of a nuclear power plant. Materials and Methods: It was modelled under the framework of the NRC Regulatory Guide 1.145 for light-water reactors, reflecting the features of heavy-water reactors as specified in the Canadian National Standard and the modelling features in MACCS2, such as atmospheric diffusion coefficient, ground deposition, surface roughness, radioactive plume depletion, and exposure from ground deposition. Results and Discussion: An integrated accident consequence assessment code, ACCESS (Accident Consequence Assessment Code for Evaluating Site Suitability), was developed by taking into account the unique regulatory positions for reactor types under the framework of the current Korean technical standards. Field tracer experiments and hand calculations have been carried out for validation and verification of the models. Conclusion: The modelling approaches of ACCESS and its features are introduced, and its applicative results for a hypothetical accidental scenario are comprehensively discussed. In an applicative study, the predicted results by the light-water reactor assessment model were higher than those by other models in terms of total doses.

Three-Dimensional Numerical Modelling of Water Circulation and Thermal Diffusion (해수순환과 온배수 확산에 관한 3차원 수치모델링)

  • Jung Tae Sung;Kim Sang Ik;Kang See Whan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1998
  • Numerical models have been widely used to understand the structure of coastal currents and the transport mechanisms in regard to the fate of pollutants. This study focuses on the development of a three-dimensional model of coastal circulation and mass transport. The model was used to calculate coastal currents and temperature distributions of the thermal plume discharged from a power plant. The model results were compared with field-observed data. They showed the relatively good agreements with the data. The model can be used to estimate the currents and its mass transport in coastal waters.

  • PDF