• 제목/요약/키워드: Plume length

검색결과 39건 처리시간 0.022초

노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감 (Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet)

  • 김진화;유정열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

온수방류의 귀환에 방류구 길이의 영향 (Effect of Length of Outfall Structure on Reattachment of Thermal Discharge)

  • 윤태훈;육운수;이용균
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.123-134
    • /
    • 1994
  • 돌출방류수로에 의하여 동일한 수심의 개수로에 방류되는 부력방류에 의한 연안귀환이 수리실험에 의하여 해석되었다. 부력방류는 온수를 방류하여 발생된다. 돌출방류로 인하여 부력류 하류에 형성되는 재순환영역의 크기는 비돌출방류에서 보다 증가하는 경향을 갖으나 황온도분포는 균일하고 횡단면 최대온도는 감소를 나타낸다. 높은 부력흐름율과는 반대로 낮은 부력흐름율 조건에서 단면평균온도 또는 열흐름율은 돌출길이의 영향이 무시할 정도이다. 비돌출의 경우에는 연안귀환에 유속비가 지배적인 매개변수이었으나 돌출방류의 경우에는 유속비와 후르드수가 다같이 지배적인 인자로 나타났다.

  • PDF

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

가속 드라이아이스 snow impact에 의한 도막 제거속도의 측정 (Measurement of Coating Removal Rate of Accelerated Dry Ice Snow Impact)

  • 나영민;김호태;김선근
    • 청정기술
    • /
    • 제10권4호
    • /
    • pp.177-187
    • /
    • 2004
  • 드라이아이스 스노우 젯(dry ice snow jet)을 액체 이산화탄소의 고압팽창에 의해 만들고 운반기체에 의해 더욱 가속시킬 수 있었다. 코팅의 제거기구는 표면 오염입자의 그것과 크게 다르지 않았다. 코팅의 제거를 Hutchings 식으로 정량적으로 표현할 수 있었다. 이들 식에 의한 plot에서 얻은 두개의 매개변수로 코팅의 제거 속도와 단위 이산화탄소의 질량에 의해 제거된 비 코팅면적을 예측할 수 있었으며 아울러 실험데이터의 신뢰도와 실험 에러의 보정도 가능하게 되었다. 노즐 기판 거리와 노즐길이를 바꾸었을 때 얻어진 이들 plot이 한점에서 만날 수 있음을 알 수 있었으며 이점이 jet plume을 모음에서 얻어진 scar 반경의 증대효과와 jet를 확산시킴에서 얻어진 scar 반경 증대효과가 균형을 맞추는 데서 얻어진 것으로 판단된다.

  • PDF

정지수체로 방류된 연직다중\ulcorner㈏\ulcorner최소희석률 (Minimum Dilution of Vertical Multijet Discharging into Stagnant Water)

  • 김홍식;서일원;유대영;서용원
    • 한국수자원학회논문집
    • /
    • 제32권2호
    • /
    • pp.153-162
    • /
    • 1999
  • 본 연구에서는 정지수체에서 다공확산관을 통해 방류된 연직다중의 혼합 및 희석 특성에 대해 규명하였다. 3차원 실험수조에서 실험을 통해 밝혀진 결과는 다음과 같다. 우선 다공확산관의 병합과정을 살펴보면 흐름의 안정조건에 따라 병합거리가 다소 차이가 있기는 하지만 {{{{ { z}_{ } }}}}/{{{{ {l}_{ } }}}}가 대략 3인 지점부터 병합이 시작되어 그 이후에는 평면부력?의 거동에 서서히 가까워짐을 알 수 있다. 최소희석률에 대해 분석해 본 결과, 방류운동량이 지배적인 영역, 천이영역, 그리고 부력이 지배적인 부력류영역으로 나누어 희석률 특성을 표현할 수 있음을 알 수 있었다. 본 연구의 실험결과 다공확산관의 경우 부력류영역의 희석률 상수가 평면확산관에 비해 15% 더 높게 나왔다. 그 이유는 다공확산관의 경우 병합 이전에는 개별의 경계면에서 주변수의 포획이 발생하여 희석이 증대되기 때문이다.

  • PDF

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

대기 경계층 연직방향 확산의 지면 거칠기에 따른 변화에 관한 실험적 연구 (An Experimental Study on the Variation of Vertical Dispersion within Boundary Layer with Surface Roughness)

  • 박옥현;윤창옥
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.237-246
    • /
    • 2000
  • An experimental study has been carried out using a rotating water channel in order to investigate the effect of surface roughness on the vertical dispersion of plume within boundary layer. Dispersion measurements of tracers released from two sources with different height at neutral conditions over various rough terrain ranging from rural to urban have been performed. Various values of roughness length were simulated by combining of 4 stream velocities and 3 roughness element conditions. Dispersion measurements have also been made for rough terrain where high buildings are locally concentrated. Values of $\sigma$z increase with roughness and this tendency appears to apply both cases of with and without locally concentrated high buildings. The comparisons of the Bowne's nomogram on $\sigma$2 vs x relationship and the measurements of $\sigma$2 with roughness show good accordance in $\sigma$2 distribution at stability D class over rural, suburban and urban terrain. For constant roughness length the $\sigma$2 values of plumes from lower source height are smaller than those of plumes from higher source at short downwind distance, but this relationship becomes reverse as distance increases. Crossing appears to be made before about 2km. The value of constant I in McMullen's equation $\sigma$2=exp [I+J(In x) + K(In x)2] appears to increase with roughness length, however, the relationships between other constants and roughness have been confirmed. The values of $\sigma$2 for various downwind distances, estimated by using an equation which is employed in ISC (Industrial Source Complex) dispersion model for areas where high buildings are locally assembled, are in accordance with measurements from water channel experiments.

  • PDF

Thermal Effluent through Extruded Side Channel

  • Yoon, Tae-Hoon;Yook, Woon-Soo;Yi, Young-Kon
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.67-79
    • /
    • 1995
  • The reattachment of buoyant efflluent to a shore in a crossflow is investigated experimentally. The effluent is prodeced by discharging heated water through a projected side channel into a confined crossflow of the same depth. In the projecting effluent, the size of recirculating region, which is formed by deflected thermal plume on the lee of the effluent, tends to increase, but the maximum temperature decreases in the direction of the crossflow and it has more uniform transverse spreading compared to non-projected type. The heat flux across the crossflow is found to be independent of the projceted length of the side channel under relatively high buoyancy flux on the contrary to low buoyancy flux. The reattachment of th effluent can be specified by both velocity ratio and densimetric Froude number, whereas only the velocity ratio is governing factor to the reattachment of the effluent in the case of non-projecting type.

  • PDF

밀도차에 의해 발생하는 이송을 고려한 휘발성 유기화합물 가스의 거동 (Behavior of Gaseous Volatile Organic Compounds Considered by Density-Dependent Gas Advection)

  • 이창수;이영화
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1321-1326
    • /
    • 2002
  • A numerical model is investigated to predict a behavior of the gaseous volatile organic compounds and a subsurface contamination caused by them in the unsaturated zone. Two dimensional advective-dispersion equation caused by a density difference and two dimensional diffusion equation are computed by a finite difference method in the numerical model. A laboratory experiment is also carried out to compare the results of the numerical model. The dimensions of the experimental plume are 1.2m in length, 0.5m in height, and 0.05m in thickness. In comparing the result of 2 methods used in the numerical model with the one of the experiment respectively, the one of the advective-dispersion equation shows better than the one the diffusion equation.

토조 및 수치모형을 이용한 개방형 지중 열교환 시스템 모의 (Simulation of Open-Loop Borehole Heat Exchanger System using Sand Tank Experiment and Numerical Model)

  • 이성순;배광옥;이강근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.489-492
    • /
    • 2007
  • Understanding the thermohydraulic processes in the aquifer is necessary for a proper design of the aquifer thermal energy utilization system under given conditions. Experimental and numerical test were accomplished to evaluate the relationship between the geothermal heat exchanger operation and hydrogeological conditions in the open-loop geothermal system. Sand tank experiments were designed to investigate the open-loop geothermal system. Water injection and extract ion system as open-loop borehole heat exchanger was applied to observe the temperature changes in time at injection well, extraction well and ambient groundwater. The thermohydraulic transfer for heat storage was simulated using FEFLOW for two cases of extraction and injection phase operation in sand tank model. As one case, the movement of the thermal plume was simulated with variable locations of injection and extraction well. As another case, the simulation was performed with fixed location of injection and extraction well. The simulation and experimental results showed that the temperature distribution depends highly on the injected water temperature and the length of injection time and the groundwater flow and pumping rate sensitively affect the heat transfer.

  • PDF