• Title/Summary/Keyword: Plume analysis

Search Result 212, Processing Time 0.038 seconds

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

A Numerical Model to Analyze Thermal Behavior of a Radiative Heater Disigned for Flip-Chip Bonders (플립칩 본더용 가열기의 열특성 해석을 위한 수치모델)

  • Lee S. H;Kwak H. S;Han C. S;Ryu D. H
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • This study presents a numerical model to analyze dynamic thermal behavior of a hot chuck designed for flip-chip bonders. The hot chuck of concern is a heater which has been specifically developed for accomplishing high-speed and ultra-precision soldering. The characteristic features are radiative heat source and the heating tool made of a material of high thermal diffusivity. A physical modeling has been conducted for the network of heat transport. A simplified finite volume model is deviced to simulate time-dependent thermal behavior of the heating tool on which soldering is achieved. The reliability of the proposed numerical model is verified experimentally. A series of numerical tests illustrate the usefulness of the numerical model in design analysis.

Migration of calcium hydroxide compounds in construction waste soil

  • Shin, Eunchul;Kang, Jeongku
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • Migration of leachate generated through embankment of construction waste soil (CWS) in low-lying areas was studied through physical and chemical analysis. A leachate solution containing soluble cations from CWS was found to have a pH above 9.0. To determine the distribution coefficients in the alkali solution, column and migration tests were conducted in the laboratory. The physical and chemical properties of CWS satisfied environmental soil criteria; however, the pH was high. The effective diffusion coefficients for CWS ions fell within the range of $0.725-3.3{\times}10^{-6}cm^2/s$. Properties of pore water and the amount of undissolved gas in pore water influenced advection-diffusion behavior. Contaminants migrating from CWS exhibited time-dependent concentration profiles and an advective component of transport. Thus, the transport equations for CWS contaminant concentrations satisfied the differential equations in accordance with Fick's 2nd law. Therefore, the migration of the contaminant plume when the landfilling CWS reaches water table can be predicted based on pH using the effective diffusion coefficient determined in a laboratory test.

The influence of a magnetic field on a crystalline structure of carbon nitride deposition (질화탄소 박막 증기 증착 시 자장이 결정 구조 성장에 미치는 영향)

  • 김종일;배선기;박희석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.165-169
    • /
    • 2001
  • Carbon nitride films were grown on Si (100) substrate by a laser-electric discharge method with and without a magnetic field assistance. The magnetic field leads to vapor plume plasma expending upon the ambient arc discharge plasma area. Influence of the magnetic field has resulted in increase of a crystallite size in the films due to bombardment (heating) of Si substrates by energetic carbon and nitrogen species generated during cyclotron motion of electrons in the discharge zone. Many crystalline grains were observed in the morphology of the deposited films by scanning electron microscopy. In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.

  • PDF

Preparation and Characterization of Crystalline Carbon Nitride (결정질 질화탄소 박막의 합성과 그 특성 해석)

  • 김종일;배선기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.835-844
    • /
    • 2001
  • In this paper, we report the successful growth of crystalline carbon nitride films in Si(100) by a laser-electric discharge method. The laser ablation of the target leads to vapor plume plasma expending into the ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy(AES) were used to identify the binding structure and the content of the nitrogen species in the deposited films. The surface morphology of the films with a deposition time of 2 hours is studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.

  • PDF

Comparison of FDDO and DSMC Methods in the Analysis of Expanding Rarefied Flows (팽창희박류의 분석에 있어서 FDDO와 직접모사법의 비교)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.142-149
    • /
    • 1996
  • 이차원 노즐을 통하여 저밀도 환경으로 팽창하는 희박류의 분석에 있어서 불연속좌표법과 결합된 유한차분법(finite-difference method coupled with the discrete-ordinate method, FDDO)과 직접모사법(direct-simulation Monte-Carlo method, DSMC)이 비교되었다. FDDO를 이용한 분석에서는 충돌적분모델을 도입하여 간단해진 볼츠만식(Boltzmann equation)이 불연속좌표법을 이용하여 물리적 공간에서는 연속이나 분자속도 공간에서는 불연속좌표로 표시되는 편미분방정식군으로 변환되어 유한차분법에의하여 수치해석 되었다. 직접모사법에서는 분자모델로 가변강구모델(variable hard sphere model, VHS)이, 충돌샘플링모델로는 비시계수법(no time counter method, NTC)이 채택되었다. 전혀 다른 두 가지 방법에 의한 노즐 내부에서의 유체흐름 해석결과는 매우 잘 일치하였으며, 노즐 외부의 plume 영역에서는 FDDO에 의한 해석결과가 직접모사법에 의한 해석결과에 비하여 약간 느린 팽창을 보였다.

  • PDF

Numerical Analysis of Laminar Natural Convection Heat Transfer around Two Vertical Fins by a Spectral Finite Difference Method

  • Haehwan SONG;MOCHIMARU Yoshihiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.56-57
    • /
    • 2003
  • A numerical solution is presented for the natural convection heat transfer from two vertical fins using a spectral finite difference method. Virtual distant boundary conditions for two bodies that are compatible with plume behavior and with an overall continuity condition are introduced. A boundary-fitted coordinate system is formed. Streamlines, isotherms, mean Nusselt numbers and drag & lift coefficients are presented for a variety of dimensionless parameters such as a Grashof number and a Prandtl number at a steady-state. Extensive effectiveness of a spectral finite difference method was established.

  • PDF

Optimal Design of Atmospheric Plasma Torch with Various Swirl Strengths (스월 강도에 의한 상압 플라즈마 토치의 최적 설계)

  • Moon, J.H.;Kim, Youn-J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1736-1741
    • /
    • 2003
  • The characteristics plasma flow of an atmospheric plasma torch used for thermal plasma processing is studied. In general, it is produced by the arc-gas interactions between a cathode tip and an anode nozzle. The performance of non-transferred plasma torch is significantly dependent on jet flow characteristics out of the nozzle. In this work, the distribution of gas flow that goes out to the atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric plasma torch. Numerical analysis is carried out with various angles of an inlet flow which can create different swirl flow fields. Moreover, the size of plasma plume is experimentally depicted.

  • PDF

Three-Dimensional Computations of Rocket Exhaust Plume (로켓 배기플룸에 관한 3차원 수치해석)

  • Kim Y.-M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.71-76
    • /
    • 1999
  • The base flow regions of a three-body sounding rocket containing multiple exhaust plumes were numerically investigated in three dimensions for a free stream Mach number of 2.7 at flight altitude 18.5 km. The flowfields were calculated using the full compressible Navier-Stokes equations with an one-equation turbulence model of Baldwin-Earth. The present calculations were executed based upon a chemically frozen, single perfect gas model assumption. Due to the symmetry of the three-body rocket of each single nozzle, only one fourth of the computational domain was considered for the analysis. The results indicate that a babe heating effect is not considerable due to the small expansion of the plumes. In the base, however, a low speed recirculating flow dominates the region.

  • PDF

Influence of a Magnetic Field on High voltage Discharge Plasma Area for Carbon Nitride Film Deposition (질환탄소 박막 증착 시 고전압 방전 플라즈마에 가한 자장의 영향)

  • 김종일;배선기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • Carbon nitride films were grown on Si (100) substrate by a laser-electric discharge method with/without a magnetic field assistance. The magnetic field leads to vapor plume plasma expending upon the ambient arc discharge plasma area. Influence of the magnetic field has resulted in increased of a crystallite size int he films due to bombardment (heating) of Si substrates by energetic carbon and nitrogen species generated during cyclotron motion of electrons in the discharge zone. The surface morphology of the films with a deposition time of 2 hours was studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.