• Title/Summary/Keyword: Plug seedlings

Search Result 191, Processing Time 0.026 seconds

Effects of Seed Pre-treatment and Seedling Culture System on Germination and Subsequent Growth of Cynanchum wilfordii (종자 전처리 및 육묘방법이 큰조롱의 종자 발아 및 생육에 미치는 영향)

  • Lee, Su Gwang;Cho, Won Woo;Ku, Ja Jung;Kang, Ho Duck
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2013
  • The present study was examined seed germination and growth characteristics of Cynanchum wilfordii under the following conditions such as soaking temperature, concentrations of $GA_3$, trays and soil types, and shading conditions. In seed pre-treatment, germination rate was the highest at 93% when soaked in 100 ppm $GA_3$ at $20^{\circ}C$ and seedling growth was best in 50 plug cell tray. Physiological quality was best in the condition in which seeds were treated with 10 ppm $GA_3$ at $20^{\circ}C$. Taking into consideration the seedling growth, their physiological quality as well as economical aspects, seedlings with plant height (over 10 cm) and root length (over 10 cm) were grown vigorously 30-45 days after the seeds were sown in mid-April in TKS, TKS+perlite and TKS+rice hull of 128 or 200 plug cell tray.

Effect of Grafting Methods on Plug Seedling Quality, Growth after Transplanting and Yield of Oriental Melon (Cucumis melo L. var. makuwa Mak.) (참외 접목방법이 플러그 묘 소질과 정식 후 생육 및 수량에 미치는 영향)

  • Bae Su Gon;Kim Jwoo Hwan;Do Han Woo;Shin Yong Seub;Seo Yong Jin
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • This study was conducted to investigate the effect of grafting methods on plug seedling quality, growth after transplanting, and yield of oriental melon that those seedlings were raised in the 32 hole plug tray for protected cultivation. Number of leaf and leaf area in approach grafting were higher until 15 days after grafting but lower on 20 days after grafting. Plant height, stem diameter and content of chlorophyll were nearly the same of each grafting methods on 20 days after grafting. Growth of top part, that is, plant height, leaf number, and leaf area on root removed single cotyledon ordinary splice grafting was the highest among the grafting methods. In the underground part, dry weight of root was high and T/R ratio was the lowest. Seedling quality of root removed single cotyledon ordinary splice grafting was the highest among grafting methods before transplanting. Plant height, number of leaf, leaf area and dry weight of root removed single cotyledon ordinary splice grafting in the growth of field were the highest on 30 days after grafting among grafting methods and days required for first flowering was also shorter, 38.4 days among grafting methods. But Fruit weight, content of soluble solids, fruit hardness, and color characteristics in fruit quality were insignificant among each grafting methods. Consequently, grafting methods influenced on the seedling quality, of oriental melon early growth after transplanting and yields. It was concluded that root removed single cotyledon ordinary splice grafting was the best methods in present study. It will be needed to convert grafting methods. Thus new grafting method should be applied.

Enhanced Graft-take Ratio and Quality of Grafted Tomato Seedlings by Controlling Temperature and Humidity Conditions (토마토 공정묘의 접목활착율과 묘소질 향상을 위한 접목 활착실내의 적정 온.습도 조건 구명)

  • Vu, Ngoc-Thang;Zhang, Cheng-Hao;Xu, Zhi-Hao;Kim, Young-Shik;Kang, Ho-Min;Kim, Il-Soep
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • This study was conducted to enhance graft-take ratio and quality of grafted tomato seedlings by controlling temperature and humidity during the healing and acclimatization processes. Three temperature levels ($20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were carried out to determine optimum temperature on four rootstocks. In addition, twelve combinations of three relative humidity levels (70%, 80%, and 90%) and four temperature levels ($17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$, and $26^{\circ}C$) were set up to evaluate the effect of relative humidity and temperature on the graft-take ratio of grafted seedlings. In the other hand, five relative humidity periods (H0, H1, H2, H3, and H4: 90% relative humidity for first 0, 1, 2, 3 and 10 days and afterwards relative humidity was reduced to 70%, respectively) were examined effect of relative humidity periods on the graft-take and quality of grafted seedlings. The higher graft-take ratios (84.0~87.4%) were showed at $23^{\circ}C$ compared to $20^{\circ}C$ and $26^{\circ}C$ in all rootstocks. Graft-take ratios decreased and number of diseased plants increased at high temperature. The graft-take ratios increased with increasing relative humidity in all temperature levels on the $3^{rd}$ and $7^{th}$ day after grafting. However, increasing relative humidity significantly increased percent of diseased plants. The graft-take ratio reduced at ($26^{\circ}C$) and ($17^{\circ}C$) temperature under all relative humidity conditions. The graft-take ratio increased with increasing period of 90% relative humidity. Maximum graft-take ratios were observed in H2 and H3 treatments. Graft-take ratio decreased with increasing 90% relative humidity for 10 days (H4). Diseased plants had not been found in H0, H1, H2, and H3 treatments. Seedling quality was improved through increasing fresh and dry weight of root, compactness, and root morphology of tomato seedlings in H2 and H3 treatments. Therefore, high relative humidity (90%) for first 2 or 3 days and afterwards reduced low relative humidity (70%) at $23^{\circ}C$ condition during healing and acclimatization promoted the graft-take and quality of grafted tomato seedlings.

Effect of Light Quality on Growth of Cucumber Plug Seedlings (광질이 오이 플러그 묘의 생육에 미치는 영향)

  • 용영록;황세진;김일섭
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.89-93
    • /
    • 2000
  • 광파장 및 조사시기에 따른 오이묘의 생육 반응을 검토하였다. 광원에 따른 오이 묘의 생육상태를 조사해본 결과 청색광, 적색광을 처리한 것이 생체중, 하배축 무게, 근중이 증가하면서 하배축의 신장이 억제되었고, 청색광과 적색광을 혼합하여 야간 12시간씩 조사하여 30일간 육묘해 본 결과 뿌리의 발육도 우수하고, 줄기와 잎의 생육 정도에서도 우량묘의 소질을 보였다. 청색광과 적색광을 혼합하여 야간 6시간과 12시간씩을 조사하여 30일간 육묘한 결과 하배축의 길이는 각각 60.0mm와 44.9mm였고, 하배축의 무게는 0.59g, 0.62g으로 나타나 12시간 조사구가 하배축의 신장억제효과가 큰 것으로 나타났다. 하배축의 엽록소 함량은 청색광과 적색광의 조사시간이 길어질수록 뚜렷이 증가하였고, 식물체도 진한 녹색을 나타냈다. 광처리구와 무처리구의 오이묘 하배축의 횡단면과 종단면을 검경하여 세포구조를 비교해 본 결과 광처리구의 횡단면 표피조직은 단층의 밀착된 세포로 되어 있으며, 바깥쪽 세포는 현저하게 두꺼웠다. 후각조직의 세포는 작고 부정형이며, 세포간극이 조밀하였으며, 세포구조도 치밀한 특성을 보였다. 종단면은 광처리구에서 세포가 짧고 세포간에 간극이 없는 반면 무처리구는 세포가 길고 뚜렷이 구분되지 않은 것이 관찰되어 대체로 광처리구는 무처리구에 비해 세포신장이 억제되는 대신 세포구조가 치밀하여 식물체의 도장이 억제된다는 것을 알 수 있었다.

  • PDF

Development of Vacuum Nozzle Seeder for Cucuribitaceous Seeds(I) - Design factors for vacuum seeding large sized seeds - (박과 종자용 진공노즐식 파종기 개발(I) 대립종자의 진공파종을 위한 요인구명 -)

  • 김동억;장유섭;김승희;이공인
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.525-530
    • /
    • 2003
  • This study was carried out to develop a vacuum nozzle seeder for the automation of large seeds sowing of fruit vegetables and rootstocks. Moreover, the seeding efficiency was examined to find the optimum operating condition considering high precision seeding. The important operating factors for high seeding rate were typically nozzle diameter and absorbing vacuum pressure. The optimum nozzle diameters were found 1.5, 1.5 and 2.0 mm for Chambak, Tuktozwa and Hukjong while the optimum vacuum pressures were 8.0㎪, 10.6㎪ and 5.3㎪, respectively. Under the optimum operating condition, the results indicated that the maximum seeding rates were 97.6%, 98.8% and 97.6% respectively for Chambak Tuktozwa and Hukjong. The vibrating acceleration of the hopper did not make any significant effects on the seeding rate when the vacuum pressure reached 8.0㎪ and the sowing rate became higher with lighter seed. As the seed became heavier, the larger diameter of nozzle was recommended 1.5mm of the nozzle diameter was found to be applied for the experimental seeds. The vacuum pressure was also found 8.0㎪ - 13.3㎪ at that time.

Effects of the Mixing Ratio of the Different Substrates and the Concentration of Fertigation in Nutrient Solution on the Growth of Tomato Plug Seedlings (배지의 혼합비율과 관비 양액 농도가 토마토 플러그묘의 생장에 미치는 영향)

  • Kim, Hong-Gi;Cho, Ja-Yong;Yu, Sung-Oh;Yang, Seung-Yul;Kang, Jong-Gu;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study was conducted to clarify the effects of the different mixing ratios of substrate mixtures based on peat moss and the concentration of nutrient solution on the growth of tomato (Lycopersicon esculentum Mill.) seedlings. Substrates such as peat moss, rice hull, carbonized rice hull, decomposed sawdust, perlite and granular rock wool were mixed and used. The concentration of nutrient solution were adjusted to EC $0.5{\sim}1.5mS/cm$. The volumetric moisture contents became higher as peat moss mixed were much more. Total porosities in all substrate mixtures were over 80%, and pH in substrate mixtures became lower as the volume of peat moss mixed higher. Mixing ratios of substrates suitable for the production of tomato seedlings with the higher quality were peat moss:rice hull:carbonized rice hull:decomposed sawdust:perlite=25:10:25:20:20(v/v). The plant growth was not significant among the different substrate mixtures. However, plant growth such as plant height, leaf area, and total dry weight became significantly increased as EC increasing.

Morphology and Leaf Color Changes of Grafted Tomato Plug Seedlings Irradiated by Different Wavelengths of Photosynthetically Active Radiation during Low Light Irradiation Storage (저광 조사 저온 저장 중 PAR의 각 파장에 의한 토마토 플러그 묘의 형태 및 엽색의 변화)

  • Park, Jong-Seok;Fujiwara, Kazuhiro
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.283-287
    • /
    • 2008
  • To investigate the effects of different wavelengths of photosynthetically active radiation on the morphology and leaf color changes of a single tomato (Lycopersicon esculentum) seedling, we stored the seedling at $10{\pm}0.5^{\circ}C$ under eight different wavelengths (peak wavelengths; 405, 450, 505, 545, 600, 645, 680, and 700 nm) with a constant photosynthetic photon flux of $3{\mu}mol\;m^{-2}s^{-l}$ for 28 d. Under the 405, 450, and 505 nm wavelength conditions, the leaves of the seedlings showed vigorous shape with an upright morphology. Rachis elongation was suppressed and hence compact appearance was observed under the 450 and 505 urn conditions. Although the difference in leaf color between before storage and on 28 days after storage was observed under all wavelength conditions, the 405 and 700 um irradiations changed the leaf color to light green. Application of light-emitting diode (LED) light irradiated from around 450 to 545 nm can contribute to vigorous shape with an upright morphology of tomato seedlings during low light irradiation-low temperature storage.

The Growth of Cucumber Seedlings Grown in Paper Pot Trays Affected by Nutrient Management During Seedling Period, Seedling Age, and Night Temperature After Transplanting (종이포트 묘 육묘시 양분관리, 육묘일수 및 정식 후 야온에 따른 오이의 생육)

  • Jang, Yoonah;An, Sewoong;Chun, Hee;Lee, Hee Ju;Wi, Seung Hwan
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.396-403
    • /
    • 2019
  • This study was conducted to investigate the growth of grafted cucumber seedlings in biodegradable paper pot trays influenced by seedling age, nutrient management before transplanting, and night temperature after transplanting. Grafted cucumber seedlings in paper pot trays were supplied with different nutrient solution concentrations of 0.5 x full strength (S) (EC $0.8dS{\cdot}m^{-1}$), 1.0S(EC $1.6dS{\cdot}m^{-1}$), 2.0S(EC $3.2dS{\cdot}m^{-1}$) two times a week until transplanting. 26, 33, 40, and 47 day-old cucumber grafted seedlings were transplanted and grown at three levels of night temperature (10, 15, and $25^{\circ}C$) during ten days. Increasing nutrient solution concentration enhanced the shoot length, number of leaves, leaf area, dry weight, and relative growth rate of seedlings. With increasing seedling age, the differences in growth were greater among nutrient treatments. The dry matter percentage increased with the seedling age, but was lower with higher nutrient concentration. The specific leaf area showed the opposite results. In cucumbers transplanted at 26- or 33-day seedling ages, night temperature did not affect the growth at ten days after transplanting. However, the growth of 40 or 47 day-old seedling decreased at $10^{\circ}C$. Compared with $25^{\circ}C$, the dry weight of cucumbers transplanted at 40- or 47-day seedling ages was depressed by 58% or 71%, respectively, at $10^{\circ}C$. Accordingly, it was concluded that the optimum nutrient solution concentrations and seedling age for the production of grafted cucumber seedlings in biodegradable paper pot trays can be 1.0S and about 30 days, respectively, and night temperature should be maintained at the range of $15-25^{\circ}C$ for promoting the growth after transplanting.

Effect of Day/Night Temperatures during Seedling Culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • This study was carried out to examine the effect of day/nignt temperatures during seedling culture on the vegetative and reproductive growth of Lycopersicum esculentum ‘Seokwang’. The study was consisted of two culture stages, plug seedling production in the growth chamber and hydroponic culture of the plant in a glasshouse. Experiments were replicated over time. The germinated seedlings were raised for 33 days (experiment 1) and 35 days (experiment 2) in 4 growth chambers, each with day/night temperatures of either $25^{\circ}C$/$25^{\circ}C$, 16$^{\circ}C$/16$^{\circ}C$, 16$^{\circ}C$/$25^{\circ}C$ or $25^{\circ}C$/16$^{\circ}C$. Cool-white fluorescent lamps provided 140$\mu$mol.m$^{-2}$ .s$^{-1}$ light for 12h each day. In the second experiment, all chambers were supplied with 1000$\mu$mol.mol$^{-1}$ CO$_{2}$ during the photoperiod and had an air velocity of 0.3m.s$^{-1}$ and relative humidity of 80%. Plug seedlings raised were transplanted to rockwool slabs in a glasshouse and were grown hydroponically using the same nutrient solutions used for seedling culture for 37 days (experiment 1) and 35 days (experiment 2). Plant height was affected more by mean daily temperature than by interaction of day and night temperatures. Plant height was the highest in 16/16$^{\circ}C$ treatment. Leaf count was not affected by day and night temperatures, and the chlorophyll concentration was the highest in 16/$25^{\circ}C$ treatment. Fresh and dry weights of stem tended to be greater in treatments of constant day and night temperature. The number of node on which first and second flower clusters were set was significantly higher in 25/$25^{\circ}C$ treatment than in the other treatments. Days to flower of the first flower on the first flower cluster were the greatest in 25/$25^{\circ}C$ and the least in 16/$25^{\circ}C$ treatment. Vegetative and reproductive growth, such as height, fresh and dry weights, days to flower, and nodes of the 1st and 2nd flower cluster set were affected by day/night temperatures.

  • PDF

Improvement of Tomato Seedling Quality under Low Temperature by Application of Silicate Fertilizer (저온 저장 시 규산 처리에 의한 토마토 묘소질 향상)

  • Vu, Ngoc-Thang;Tran, Anh-Tuan;Le, Thi-Tuyet-Cham;Na, Jong-Kuk;Kim, Si-Hong;Park, Jong-Man;Jang, Dong-Cheol;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • The object of this study was to improve tomato seedling quality in low temperature(below 7, $10^{\circ}C$ during night time or daily mean air temperature was $18^{\circ}C$) by application of silicate fertilizer. Six different silicate fertilizer concentrations (8, 16, 32, 64, 128, and 256mM) or water as the control were applied to tomato seedlings twice a week for 20 days. Positive effects were observed in the growth parameters of the seedlings treated with 16 and 32mM silicate fertilizer; the most effective concentration of silicate at which seedlings showed the best performance was 16mM. However, a high concentration of silicate (256mM) caused negative effects on the growth. The transpiration rate decreased alongside with the increase of silicate concentration up to 32mM, possibly due to the increased stomatal diffusive resistance. Silicate stimulated the growth and development of tomato seedlings, resulting in increased growth parameters and root morphology. However, no significant differences were observed among treatment numbers of soil-drenching wuth the silicate (6, 10, or 20 times with 16mM) for 20 days, suggesting that silicate treatment with 6 times may be sufficient to induce the silicate effects. The application of 16mM of silicate fertilizer reduced relative ion leakage and chilling injury during low temperature storage. In addition, the seedlings treated with silicate fertilizer recovered faster than those without silicate treatment after low temperature storage.