• Title/Summary/Keyword: Plug in vehicle

Search Result 91, Processing Time 0.022 seconds

Stochastic Modeling of Plug-in Electric Vehicle Distribution in Power Systems

  • Son, Hyeok Jin;Kook, Kyung Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1276-1282
    • /
    • 2013
  • This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.

Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

  • Gang Feng;Jian Lin;Shuai Yang;Boxuan Zhang;Jiangang Wang;Jia Yang;Zhongfeng Xu;Yongping Lei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4066-4076
    • /
    • 2023
  • Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanstätten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation.

Battery Charging System for PHEV and EV using Single Phase AC/DC PWM Buck Converter

  • Lee, Jung-Hyo;Jung, Doo-Yong;Park, Sang-Hoon;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.736-744
    • /
    • 2012
  • In this paper, a battery charging system for Plug-in Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV), and operation algorithm of charging system are introduced. Also, the proposed charging system uses commercial electricity in order to charge the battery of parked PHEV and 48V battery charging system with power factor controllable single phase converter for PHEV is investigated in this paper. This research verifies the power factor control of input and the converter output controlled by the charge control algorithm through simulation and experiment.

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

Design Procedures of LLC Resonant Converter for Electric Vehicle On-Board Charger (전기자동차 OBC용 LLC 공진형 컨버터의 설계절차)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • nowadays, many researches for plug-in hybrid electric vehicles have been actively carried out to improve the gas mileage in comparison with mass-produced hybrid electric vehicles. In this paper, the on-board charger for plug-in hybrid electric vehicles is studied for obtaining the high efficiency. The on-board charger consists of two phase interleaved PFC circuit and LLC resonant converter. The new design procedures of LLC resonant converter are proposed in this paper. These are very simple and powerful method. In order to verify the abovementioned contents, the LLC resonant converter is designed and tested by using PSIM tool.

Proposal of a Novel Plug-in-hybrid Power System Based on Analysis of PHEV System (PHEV 시스템의 분석을 통한 신 PHEV 동력 시스템 제안)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.436-443
    • /
    • 2015
  • In order to develop the PHEV(plug-in hybrid electric vehicle), the specific power transmission systems considering the PHEV system characteristics should be applied. A PHEV applied to series-parallel type hybrid power transmission system is a typical example. In this paper, the novel hybrid power systems are proposed by analyzing the existing PHEV system. The backward simulation program is developed to analyze the fuel efficiency of hybrid power system. Quasi-static models for each components such as engine, motor, battery and vehicle are included in the developed simulation program. To obtain an optimal condition for hybrid systems, an optimization approach called the dynamic programming is applied. The simulation is performed in various driving cycles. A weakness for the existing system is found through the simulation. To compensate for a discovered weakness, novel hybrid power systems are proposed by adding or moving the clutch to the existing system. Comparing the simulation results for each systems, the improved fuel efficiency for proposed systems are verified.

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

Component Sizing for Development of Novel PHEV System (신 개념 PHEV 시스템 개발을 위한 동력원 용량 설계)

  • Lee, Heeyun;Kang, Changbeom;Kim, Jinseong;Cha, Suk Won;Park, Yeong-il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.330-337
    • /
    • 2016
  • In this paper, component sizing and analysis of the novel plug-in hybrid electric vehicle powertrain configuration is conducted. Newly proposed powertrain configuration in prior study has an internal combustion engine and two electric motors. To optimize component size of the vehicle system and reduction gear ratio, component sizing methodology is proposed and conducted. Required power for vehicle's dynamic performance is calculated to decide minimum power requirement of powertrain component combination. Component size of engine and electric motor are optimized using vehicle simulation to maximize fuel economy performance. Optimized powertrain configuration and vehicle simulation results present validation of newly proposed vehicle system.

Development of Power Distribution Control Strategy for Plug-in Hybrid Electric Vehicle using Neural Network (인공신경망을 이용한 플러그인 하이브리드 차량의 동력분배제어전략 개발)

  • Sim, K.H.;Lee, S.J.;Lee, J.S.;Namkoong, C.;Han, K.S.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.18-24
    • /
    • 2015
  • The plug-in hybrid electric vehicle has a high fuel economy and can be driven long distances. Its different modes include the electric vehicle, hybrid electric vehicle, and only engine operating mode. A power management strategy is important to determine which mode should be selected. The strategy makes the vehicle more efficient using appropriate power sources for driving. However, the strategy usually needs a driving speed profile which is future driving cycle. If the profile is known, the strategy easily determines which mode is driven efficiently. However, it is difficult to estimate the speed profile for a real system. To address this problem, this paper proposes a new power distribution strategy using a neural network. The average speed and driving range are used as input parameters to train the neural network system. The strategy determines a limit for the use of the battery and the desired power is distributed between the engine and the motor simultaneously. Its fuel economy can increase by improving the basic strategy.