• Title/Summary/Keyword: Plug Seedlings

Search Result 194, Processing Time 0.021 seconds

Current Status and Perspective of Smart Vegetable Seedling Production Technology in the Republic of Korea (국내 스마트 채소 육묘 기술 개발 현황 및 전망)

  • Dong Hyeon Kang;So Young Lee;Hey Kyung Kim;Sewoong An
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • In this study, we summarized the definition of smart vegetable seedling production technology, analysis of smart seedling production system, a hardware and software configuration model for smart seedling production system, research and development trends in smart seedling production system, and proposed future research and development plans for smart seedling production technology. Smart vegetable seedling production is a data-based seedling production, management, and distribution system that utilizes 4th Industrial Revolution technology to improve seedling productivity and quality. The production of vegetable seedlings using smart seedling production technology can be efficiently managed by collecting, analyzing, and managing information on seedlings, environment, and tasks at each stage of production by linking with the smart seedling integrated management system. However, there is still a lack of standardization of seedling standards and quality for each vegetable crop to establish smart seeding production technology, as well as development of smart seedling production element technology, which requires national wide R&D support.

Application of Chlorophyll Fluorescence Parameters for the Detection of Water Stress Ranges in Grafted Watermelon Seedlings (수박접목묘의 건조스트레스 범위 탐지를 위한 엽록소형광 지수의 적용)

  • Shin, Yu Kyeong;Kim, Yong Hyeon;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.461-470
    • /
    • 2019
  • This study was carried out to quantify the drought stress in grafted watermelon seedlings non-destructively by using chlorophyll fluorescence (CF) imaging technique rather than the visual judgment. Six-day old watermelon seedlings were grown under uniform irrigation for 3 days, and then given drought stress. Afterward, the sensor for the measurement of water content in plug tray cell unit was used to classify the drought-stress level into nine groups from D1 (53.0%, sufficient moisture state) to D9 (15.7%, extremely dry stress), and the 16 CF parameters were measured. In addition, re-irrigation was performed on the drought stressed seedlings(D5 - D9) to determine the growth and photosynthesis recovery level, which was not confirmed by visual judgment. The kinetic curve patterns of CF in three different drought stressed seedling groups were found to be different for the early detection of drought stress. All the 16 CF parameters decreased continuously with exposure to drought stress and drastically decreased from D5 (32.1%) where the visual judgment was possible. The fluorescence decline ratio (Rfd_Lss) started to decrease from the initial drought stress level (D5 - D6), and the Maximum PSII quantum yield (Fv/Fm) was significantly decreased in the later extreme drought stress range (D7 - D9) by re-irrigation recovery test. Thus, Rfd_Lss and Fv/Fm parameters were finally selected as potent indicators of growth and photosynthesis recovery in the initial and later stages of drought stress. Also, to the differences in the numerical values of the individual chlorophyll fluorescence parameters, the drought stress level was intuitively confirmed through the image. These results indicate that Rfd and Fv/Fm can be considered as potential CF parameters for the detection of low and extremely high drought stress, respectively. Furthermore, Fv/Fm can be considered as the best CF parameters for recovery at re-irrigation.

Development of Transplanting System for Plug Seedlings(I) - Development of Transplanting Mechanism using Vacuum Suction - (플러그묘 이식시스템 개발(I) - 진공흡인식 이식 메커니즘 개발 -)

  • Lee, Gong IN;Heo, Jeong Wook
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.128-128
    • /
    • 2017
  • 현재 식물공장에서 사용되고 있는 이식장치는 핀을 이용하여 육묘트레이 위에서 플러그묘를 뽑아 육묘트레이 또는 포트로 옮겨 심는 방식을 채택하고 있다. 이러한 이식 방식은 셀과 셀 사이에 있는 다른 묘의 잎을 파지함으로써 묘를 2개 이상 취출하는 현상이라든지 핀에 의한 잎 손상 등이 우려되고 있어 이에 대한 개선책이 필요하다. 본 연구는 플러그묘의 이식작업 시 잎 손상을 줄이면서 기계 적응성을 향상시킬 수 있는 이식시스템을 개발하기 위해 진공흡인을 이용한 이식 메커니즘에 대해 검토하였다. 플러그묘 이식시스템은 육묘트레이 셀을 X-Y로 옮기는 묘 이송부, 육묘트레이의 셀 하단으로부터 진공을 발생시켜 묘를 떨어뜨리는 진공 흡인부, 낙하되는 묘를 감지하는 센서와 블로워 및 공압 실린더로 구성된 진공 발생부, 혈공된 포트를 진공 발생부의 유도관으로 옮기는 포트 이송부 등으로 설계 제작하였다. 이식 메커니즘은 육묘트레이 하단부로부터 플러그묘를 1개씩 진공흡인하는 방식을 채택하였고, 이를 위해 상하 모두 개방된 72공 육묘트레이($L538{\times}W280{\times}H45mm$)를 윗부분(Ø35mm) 보다 아랫부분(Ø37mm)의 셀이 넓은 형상으로 PP재질의 육묘트레이를 사출금형 제작하였다. 묘 이송부에 장착된 플러그묘는 X축 방향(12개 셀)으로 이식작업이 이루어지고, Y축(6개 셀)으로 이동된 후 다시 동일한 방향으로 연속 작업이 가능하도록 제어프로그램을 구성하였다. 이식 원리는 진공 흡인부에 플러그묘가 이송되면 진공 발생부의 흡착패드가 위로 전진하여 진공을 발생시켜 묘를 흡인하고, 유도관 내에 부착된 광화이버센서에 의해 묘를 감지하여 블로워와 공압실린더를 제어함으로써 이식 공정이 끝나게 된다. 로메인상추의 플러그묘를 대상으로 진공흡인 시험을 실시한 결과 묘 손상없이 이식작업이 가능한 것으로 확인되었다.

  • PDF

Effect of Plant Density on Growth Responses and Yield in Yacon

  • Ryu, Jeom-Ho;Doo, Hong-Soo;Lee, Kang-Soo;Park, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.407-410
    • /
    • 2001
  • This study was conducted to determine the optimal planting distance in cultivation of yacon (Polymnia sonchifolia Poeppig & Endlicher). Plug seedlings were planted with 6 different plant densities of 80 $\times$ 60, 80 $\times$ 50, 70 $\times$ 50, 70 $\times$ 45, 70 $\times$ 40 and 60 $\times$ 45 cm. The plant height and the petiole length were increased with increasing the planting distance. The tallest plant height of yacon was 165.4cm with the plant density of 80 $\times$ 60 cm. However, branch number per plant, leaf number on main stem and stem diameter were not significantly difference among planting densities. Tuberous root was harvested 31.42 tons/ha in 70 $\times$ 50 cm spacing. The ratio of heavier tuberous roots than 200 g to total tuberous roots decreased significantly according to increase of planting density. Fresh weights of shoot and root, contain the crown bud, were decreased, as planting distance was shorter. Tuberous root number was fewer but its weight was heavier in wide planting than in dense planting. We think that optimal planting density is about 30,000 plants/ha, if it were to be 70 cm row spacing, intrarow spacing should calculate about 47cm.

  • PDF

Several Factors Affecting Mass Production of Microlepia strigosa (Thunb.) C. Presl Sporophytes (돌토끼고사리 포자체의 대량생산을 위한 몇 가지 요인)

  • Cho, Ju Sung;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.46-58
    • /
    • 2017
  • This study was conducted to investigate the optimal conditions for spore germination, prothallus propagation, sporophyte formation and seedling growth in Microlepia strigosa (Thunb.) C. Presl. Spore germination and prothallus development were promoted by low concentrations of Knop medium nutrient solution. The optimal medium for prothallus propagation and antheridium formation was 2X MS medium with 3% sucrose. The activated charcoal content of the medium did not affect prothallus proliferation. Among the various combinations of culture soil (bedding soil, peat moss, perlite and decomposed granite), a mixture of bedding soil, peat moss and decomposed granite at a ratio of 1 : 1 : 1 (v : v : v) had a positive effect on sporophyte formation. The most efficient conditions for promoting the growth of whole plants (sporophyte seedlings) were 50 - cell plug trays filled with a mixture of bedding soil and decomposed granite at a 2 : 1 (v : v) ratio.

Effect of Substrate Amount of Perlite on the Growth and Fruit Yield of Hydroponically Grown Cucumber (Cucumis sativus L.) Plants (펄라이트 배지량이 양액재배 오이의 생장과 수량에 미치는 영향)

  • ;;;李範宣
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.265-274
    • /
    • 1999
  • This experiment was carried out to investigate the effect of container size and substrate volume on the growth and fruit yield of hydroponically grown cucumber(Cucumis sativus L.) plants. Seeds were sown in plug tray filled with coir dust on Feb. 13, 1998. Seedlings with 5 to 6 true leaves were transplanted in $2{\ell},\;4{\ell},\;6{\ell},\;8{\ell}\;and\;10{\ell}$ plastic pots filled with perlite. Cucumber fruits were harvested with 1 to 2 days interval, and fresh weight, number of normal and malformed fruit were recorded. Plant height, stem diameter, number of leaves and leaf area were highly depended on the container size. Total fresh weight and the number of fruit were increased with increasing container size. NAR(net assimilation rate) and CGR(crop growth rate) increased also with increasing the container size. Optimum container size for hydroponically grown cucumber plant using perlite was recommended as $8{\ell}$ per plant.

  • PDF

Evaluating Solar Light Collectors for Use in Closed Plant Production Systems (폐쇄형 식물생산 시스템에서 태양광 채광시스템 연구)

  • Lee, Sanggyu;Lee, Jaesu;Lee, Hyundong;Baek, Jeonghyun;Rho, Siyoung;Hong, Youngsin;Park, Jongwon
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.521-526
    • /
    • 2019
  • In this study, a solar light collector that collects and transmits solar light required for crop production in a closed plant production system was developed. The solar light collector consisted of a Fresnel lens for collecting solar light, and a tracking actuator for tracking solar light from sunrise to sunset to increase the light collection efficiency. The optical fiber that transmitted solar light was made of Glass Optical Fiber (GOF), and it had an excellent optical transmission rate. After collecting the solar light, the amount of light was measured at 5, 10, 15, 20, 25, and 30 cm distances from the GOF through the darkroom by using a light sensor logger connected to a quantum and pyranometer sensor. Compared with solar light, the light intensity of pyranometer sensor measured at 5 cm was 114% higher than solar light, and 61% at 10 cm. In addition, it was observed that it is possible to transmit the necessary amount of light for growing crops up to about 15 cm (as over 22%) through GOF. Therefore, adding diffusers to the solar light collector should be expected to replace artificial light in plant factories or plug seedlings nurseries for leafy vegetables. More studies on the solar light collection devices and the light transmission devices that have high light collection efficiency should be conducted.

Seeding Soils and Tray Types Mediate Growth Characteristics of Perilla Seedlings (상토 및 트레이 종류에 따른 종실용 들깨의 육묘 특성)

  • Park, Jin-Ki;Han, Won-Young;Han, Kil-Su;Ryu, Jong-Soo;Won, Ok-Jae;Jeong, Tae-Uk;Yoon, Young-Ho;Bae, Jin-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • The purpose of this study was to analyze the growth characteristics of perilla according to the materials of the seedbed for the development of seedling plug technology suitable for the mechanical transplantation of perilla. Perilla (Perilla frutescens var. japonica Hara) cultivars Deulsaem and Sodam were used in this experiment. The composition ratios of 170 products from 16 companies published in the 'Korean Association of Seedbed Media' homepage were compared according to usage and type, and 11 products that corresponded to the average were selected. The seedbed was classified according to the seedbed for paddy rice as light-weight, semi-weight, and weight, and based on the seedbed for horticulture, as light-weight and ultra-light. The seedlings were placed in 72-cell (semi-automatic), 128-cell (automatic) and 220-cell (automatic) plug trays. We selected 2 light-weight seedbeds of paddy rice and 2 light-weight seedbeds of horticultural products with the highest plant growth. We analyzed plant height and mat formation of the perilla roots. Results showed that the perilla height and mat formation were the best in light-weight seedbeds of paddy rice (product R1). Therefore, light-weight seedbeds of rice (product R1) were suitable for perilla plant transplantation. The estimated major components were vermiculite 41.0%, cocopeat 31.0%, peat moss 5.7%, and red-yellow soil 20.0%. The mechanical transplantation of perilla significantly boosts plant growth and reduces sowing and thinning efforts. However, continuous evaluation of newly introduced, commercial seedbeds is needed.

Analysis of Water Balance in Closed Transplants Production System (폐쇄형 묘생산 시스템의 수분 수지 분석)

  • Kim, J.K.;Kim, Y.H.;Choi, Y.H.;Lee, M.G.
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.152-159
    • /
    • 2003
  • This study was conducted to analyze the water consumption in closed transplants production system (CTPS) for the production of quality transplants and to investigate the effect of relative humidity on the water balance in CTPS. Potato (Solanum tuberosum L. cv. Dejima) plug seedlings were grown for 15 days at air temperature of 20$^{\circ}C$, relative humidity of 70%, photoperiod of 16/8 h, and photosynthetic photon flux (PPF) of 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-l}$ following rooting for 5 days in CTPS. Amount of humidified, dehumidified, irrigated and evapotranspirated water were 67.9 kg${\cdot}m^{-2},\;196.9{\cdot}m^{-2},\;44.3\;kg{\cdot}m^{-2},\;33.5\;kg{\cdot}m^{-2}$, respectively. Water content of media and plants were 1.2 kg${\cdot}m^{-2},\;6.9\;kg{\cdot}m^{-2}$, respectively. Three relative humidity levels of 60, 70, and 80% were provided to analyze the effect of humidity on the water balance in CTPS. Amount of humidified, dehumidified, irrigated, evapotranspiratad water and water contents of media and plants increased with increasing relative humidity. Since the water consumption required to produce plug seedlings in CTPS dec1eased with decreasing relative humidity, the available water utilization efficiency of CTPS increased with decreasing relative humidity. CTPS showed high available water utilization efficiency of 0.92 - 0.97 if dehumidified water in CTPS was recycled. The development of CTPS with recycling system of dehumidified water will not only reduce the water consuming for the production of transplants but contribute to the establishment of plant production economizing in water consumption.

Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings (비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향)

  • Choi, Jong-Myung;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.