• Title/Summary/Keyword: Plaxis 3D

Search Result 32, Processing Time 0.017 seconds

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

Dynamic response evaluation of deep underground structures based on numerical simulation

  • Yoo, Mintaek;Kwon, Sun Yong;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 2022
  • In this research, a series of dynamic numerical analysis were carried out for deep underground building structures under the various earthquake conditions. Dynamic numerical analysis model was developed based on the PLAXIS2D and calibrated with centrifuge test data from Kim et al. (2016). The hardening soil model with small strain stiffness (HSSMALL) was adopted for soil constitutive model, and interface elements was employed at the interface between plate and soil elements to simulate dynamic interaction effect. In addition, parametric study was performed for fixed condition and embedded depth. Finally, the dynamic behavior of underground building structure was thoroughly analyzed and evaluated.

Analysis on the Seismic Load Reduction Effect of a Ground by Considering Pile Strength (말뚝 강성을 고려한 지반의 지진하중 저감 효과에 관한 해석 연구)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo;Lee, Sei-Hyun
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.451-456
    • /
    • 2012
  • In this study, a numerical analysis to evaluate the reduction of seismic load due to pile group was performed and compared the peak ground acceleration(PGA) measured at free-field and foundation. The special attention was given to the amplification of seismic acceleration on the foundation due to the pile effects. The analysis considering pile effects was carried out for 4, 8 and 12 piles with same condition by PLAXIS 2D Dynamics. Based on the analysis results, it is found that the overall reduction in seismic load due to foundation and reduction rates are similar irrespective of pile numbers. This study gives a possibility for effective design of piled foundation by reducing seismic load about 20~25%.

Evaluation of Dynamic p-y Curve Based on the Numerical Analysis (수치해석기반의 동적 p-y 곡선 산정)

  • Park, Jeong-Sik;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.59-73
    • /
    • 2017
  • Numerical analysis using 3D finite element program (PLAXIS 3D) evaluated the interaction of soil - pile structure under dynamic surface loading. The dynamic p-y curve of the 1-g shaking table experiment by numerical analysis was calculated, and the parametric studies were presented by considering the pile-soil condition, the pile tip condition, and the loading condition. The frequency of 1.4 Hz is almost equal to the natural frequency of the pile - soil system. The p and y values of resonance phenomenon are significantly different from the results of other frequencies. The results can be summarized by a third order polynomial function representing the trend line in the p-y curve. In the case of a single pile, the shape of the dominant curve was found to be an ellipse by mathematical proof. The elliptic equation can be used for the dynamic design or analysis of soil-pile system.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

Passive Force Acting on the Kicker Block Used to Support a Raker in Soft and Weathered Soil (연약지반과 풍화토지반에서 경사고임대 지지블록의 수동토압 산정)

  • Kim, Tae Hyung;Park, Lee Keun;Kim, Tae O;Jin, Hyun Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.801-813
    • /
    • 2017
  • Passive force acting on the kicker block used to support a raker is different dependent on soil's type. The passive force incorporating a factor of safety is considered for design of the retaining wall. However, an actual passive force developing on the kicker block is overestimated and it may lead to an unsafe design. In this study, the actual passive forces acting on the kicker block in soil ground are evaluated using 3-D Finite Element Program, PLAXIS. Soft and weathered soils are selected as a soil ground. The relation curves between horizontal displacement and actual passive force of the kicker block for each soil ground are obtained through numerical analyses. From the curves, the actual passive forces are determined as a yielding point, which are about 55.5% and 66% of Rankine's passive forces in soft and weathered soils, respectively.

Footing settlement formula based on multi-variable regression analyses

  • Hamderi, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • The formulas offered so far on the settlement of raft footings provide only a rough estimate of the actual settlement. One of the best ways to make an accurate estimation is to conduct 3-dimensional finite element analyses. However, the required procedure for these analyses is comparatively cumbersome and expensive and needs a bit more expertise. In order to address this issue, in this study, a raft footing settlement formula was developed based on ninety finite element model configurations. The formula was derived using multi-parameter exponential regression analyses. The settlement formula incorporates the dimensions and the elastic modulus of a rectangular raft, vertical uniform pressure and soil moduli and Poisson's ratios up to 5 layers. In addition to this, an equation was offered for the estimation of average deflection of the raft. The proposed formula was checked against 3 well-documented case studies. The formula that is derived from 3D finite element analyses is useful in optimising the raft properties.