• Title/Summary/Keyword: Platinum nano particle

Search Result 14, Processing Time 0.024 seconds

Hydrogen evolution reaction (HER) properties of pulse laser irradiated platinum catalysts with tailored size

  • Jeonghun Lee;Hyunsung Jung
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.331-337
    • /
    • 2024
  • Platinum has been utilized as an excellent electrocatalyst with low overpotential for the hydrogen evolution reaction (HER) in water splitting, despite of its high cost. In this study, platinum particles were produced using pulsed laser technology as a HER catalyst for water splitting. The colloidal platinum particles were synthesized by nanosecond pulsed laser irradiation (PLI) without reducing agents, not traditional polyol processes including reducing agents. The crystal structure, shape and size of the synthesized platinum particles as a function of pulsed laser irradiation time were investigated by XRD and SEM analysis. Additionally, the electrochemical properties for the HER in water splitting of the irradiation time-dependent platinum electrocatalysts were studied with the analysis of overpotentials in linear sweep voltammetry and Tafel slope.

Shape Control of Platinum Nanoparticles Using a Metal Salt (금속 염을 이용한 백금 나노입자의 형상제어)

  • Kwak, Seoung Yeul;Lee, Jin Ho;Kim, Jin Woo;Jung, Taek Kyun;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.393-397
    • /
    • 2012
  • $AgNO_3$ has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, $AgNO_3$ was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when $AgNO_3$ of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt $AgNO_3$, effectively controlled the relative growth rates of each facet of Pt nano particles.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Platinum Nanoparticles Synthesis using Recovered Platinum from Waste Fuel cell (폐연료전지(廢燃料電池)스택으로부터 회수(回收)된 백금(白金)의 나노 입자(粒子) 제조(製造))

  • Kim, Young-Ae;Kwon, Hyun-Ji;Koo, Jeong-Boon;Kwak, In-Seob;Sin, Jang-Sik
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, for recovery of renewable noble metal from used stack of fuel cell, synthesis of platinum nano particle is established through effect of platinum solution concentration, pH value, reducing agent and dispersing agent at a volume ratio of 1 mM $H_2PtCl_6$:10 mM $NaBH_4$:8 mM Cl4TABr = 1:0.4:0.4(vol.%), pH4, $50^{\circ}C$, 160 rpm and 10min. Less than 5 nm platinum particles were synthesized using Pt leaching solution from used MEA of stack under same condition of method using simulated Pt solution. The characteristics of synthesized nano particles was illustrated by XPS analysis as the reduction of platinum ions into platinum metals(zero-valent).

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

Preparation of Nano-sized Pt Powders by Solution-phase Reduction (액상환원법(液相還元法)에 의한 백금(白金) 나노분말(粉末) 제조(製造))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Cho, Sung-Wook;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.36-40
    • /
    • 2007
  • Platinum plays an important role in many applications because of its extraordinary physical and chemical properties. All these applications require the use of platinum in the finely divided state. Therefore the preparation of platinum nanoparticles by reducing platinum-surfactant salt with reducing agent in the solution was investigated in this study. The net interaction between C14TABr and $H_2[PtCl_6]$ in aqueous solution results in the formation of $[C14TA]_2[PtCl_6]$. The concentration of C14TABr and the concentration of $H_2[PtCl_6]$ has to be above cmc and 0.32 mM, respectively in order to obtain complex-micelle aggregation for mono dispersed Pt particles. Pt particle size increases with increasing $H_2[PtCl_6]$ and C14TABr concentration. And the shape of Pt particles was well controlled with increasing surfactant concentration.

Physical Properties Variation of Ophthalmic Material in Content of Silver and Platinum Nanoparticle (은 및 백금 나노 입자의 함량에 따른 안 의료용 소재의 물성 변화)

  • Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.310-316
    • /
    • 2010
  • Nanoparticle with antimicrobial property has been applied to various fields. This study added silver/platinum nanoparticles to HEMA (2-hydroxyethylmethacrylate), NVP (N-vinyl pyrrolidone) and MMA (methylmethacrylate) in various concentrations and copolymerized by heating at $70^{\circ}C$ for 40 minutes, $80^{\circ}C$ for 40 minutes, and finally, $100^{\circ}C$ for 40 minutes. The particle size of used nano silver and platinum was 10 ~ 20 nm respectively. Using the polymer produced through the copolymerization process, the authors have produced a contact lens and measured the physical characteristics which showed water content of 34.29 ~ 39.00%, refractive index of 1.422 ~ 1.430, visible transmittance of 78.8 ~ 92.5% and tensile strength of 0.149 ~ 0.179 kgf. The ophthalmic lens material produced using silver/platinum nanoparticles satisfied the basic physical properties required for contact lens application.

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.