• Title/Summary/Keyword: Plating

Search Result 1,858, Processing Time 0.029 seconds

Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

  • Lee, Hye W.;Lee, Jong K.;Park, Ki Y.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was $61^{\circ}$. The contact angles of chemical etched, plasma treated or both were improved to the range of $15{\sim}33^{\circ}$. In the case of electroless plating, the thickest layer without blister was $1.6{\mu}m$. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were $75kgf/cm^2$, $102kgf/cm^2$, $113kgf/cm^2$, respectively, comparing to the $24kgf/cm^2$ of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times.

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

Optimum Parameter Values for A Metal Plating Process (금속도금공정에서의 최적 모수 값 결정)

  • Kim, Young-Jin;Hong, Sung-Hoon;Lee, Min-Koo;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.337-343
    • /
    • 2008
  • The problem of determining the optimum metal plating thicknesses on the plane and curved surfaces of an electronic part is considered. A lower specification limit for the plating thickness is usually pre-specified. In most applications, the plating thickness on the curved surface is proportional to that on the plane surface. The proportion can be adjusted by adding chemical catalysts to the plating fluid. From the economic point of view, nonconforming items with a thickness smaller than the lower specification limit incur rejection costs, such as rework and scrap costs, while a thicker plating may incur an excessive material costs. In this article, an economic model is proposed for simultaneously determining the target plating thickness and the ratio of the plating thickness on the plane surface to that on the curved surface. An illustrative example demonstrates the applicability of the proposed model.

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Effects of Multi-Complex Agent Addition on Characteristics of Electroless Ni-P Solution (복합 착화제 첨가가 무전해 Ni-P 도금액의 특성에 미치는 영향)

  • Lee, Hong-Kee;Lee, Ho-Nyun;Jeon, Jun-Mi;Hur, Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.111-120
    • /
    • 2010
  • In this study, the effects of multi-complex agents addition on characteristics of electroless Ni plating solution are investigated. The species and the concentration of complexing agents are major factors to control the deposition rate, P concentration, and surface morphology of plating films. Adipic acid increases the deposition rate in regardless of single- or mutli-complex agent addition. However, lactic acid effectively increases the deposition rate in case of multi-addition as the complex agents with adipic or sodium succinate acid. In addition, sodium citric acid and malic acid show good stabilizing effects of plating solution and lowering the deposition rate, because they have high complexibility. Therefore, it is suggested that the development of Ni-P plating solution suitable for diverse usages can be carried out systematically using the database from this study.

Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment (열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향)

  • Il-Cho Park;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Anterior inferior reconstruction plate on acute midshaft clavicle fvacture (쇄골 간부골절의 전하방 부착 재구성 금속판을 이용한 치료)

  • Kang, Jae-Do;Kim, Kwang-Ryul;Kim, Hyung-Chun;Lim, Moon-Sup;Kim, Seong-Hoon;Kweon, Jun-Hyung
    • Clinics in Shoulder and Elbow
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Purpose: Many different operative technique of mid-shaft clavicle fracture have been reported. The aim of this prospective study was to compare the results of anterior or anterior-inferior plating with superior plating on the acute mid-shaft fracture of clavicle Materials and Methods: From February1997 to February 2002, thirty-eight consecutive open reduction and internal fixation with reconstruction plates were performed in thirty-eight patients. from August 1999, anterior or anterior-inferior plating was mainly used, prospectively. The duration of follow-up averaged 17 months (range,23 to 43 months). The mean age was 38 years old (range,21 to 57 years old) on anterior or anterior-inferior plating group and 35 years old (range,24 to 55 years old) on superior plating group. The physician progress note, VAS patient complement score, Roentgenogram and ASES score was evaluated. Results: Four patients were lost to follow-up. There was no statistical difference on mean radiological bone union time (8.7 weeks vs. 8.6 weeks) and ASES score (92 vs 94) at inferior and superior plating groups (P > 0.05). VAS patient complement score was very good or excellent on anterior or anterior-inferior group, average score was 1.1 (ranger,0 to 2) compare with superior plating group (P < 0.05). There were two cases of infection, 1 case of failed fixation on superior plating group and 1 case of delayed union on anterior inferior plating group. Conclusion: Anterior inferior plating on acute clavicle midshaft fracture results in excellent patient complement score compare with conventional superior reconstruction plate.

Sensitivity of Electroplating Conditions on Young's Modulus of Thin Film (니켈박막의 공정조건에 따른 탄성계수 변화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.88-95
    • /
    • 2008
  • Young's modulus of electroplated nickel thin film is systematically investigated using the resonance method of atomic force microscope. Thin layers of nickel to be measured are electroplated onto the surface of an AFM silicon cantilever and Young's modulus of plated nickel film is investigated as a function of process conditions such as the plating temperature and applied current density. It is found that Young's modulus of plated nickel thin film is as high as that of bulk nickel at low plating temperature or low current density, but decreases with increasing plating temperature or current density. The results imply that the plating rate increases as increasing the plating temperature or current density, therefore, slow plating rate produces a dense plating material due to the sufficient time fur nickel ions to form a dense coating.