DOI QR코드

DOI QR Code

Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment

열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향

  • Il-Cho Park (Division of Cadet Training, Mokpo National Maritime University) ;
  • Seong-Jong Kim (Division of Marine Engineering, Mokpo National Maritime University)
  • 박일초 (국립목포해양대학교 승선실습과정부) ;
  • 김성종 (국립목포해양대학교 기관시스템공학부)
  • Received : 2024.02.01
  • Accepted : 2024.02.09
  • Published : 2024.02.29

Abstract

The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

Keywords

Acknowledgement

본 과제(결과물)은 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC3.0)의 연구결과입니다.

References

  1. Y. J. Hu, L. Xiong, and J. L. Meng, Electron microscopic study on interfacial characterization of electroless Ni-W-P plating on aluminium alloy, Applied Surface Science, 253, 5029 (2007). Doi: https://doi.org/10.1016/j.apsusc.2006.11.009
  2. A. S. Abbas, B. S. Mahdi, H. H. Abbas, F. F. Sayyid, A. M. Mustafa, I. A. Annon, and N. H. Obaeed, Corrosion Behavior Optimization by Nanocoating Layer for Low Carbon Steel in Acid and Salt Media, Corrosion Science and Technology, 22, 1 (2023). Doi: https://doi.org/10.14773/cst.2023.22.1.1
  3. J. H. Han, J. B. Lee, N. Van Phuong, and D. H. Kim, A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent, Corrosion Science and Technology, 21, 89 (2022). Doi:https://doi.org/10.14773/cst.2022.21.2.89
  4. T. H. Song, J. K. Lee, and S. Y. Park, Electroless Ni plating on PC to improve adhesion by DBD plasma treatment, Corrosion Science and Technology, 4, 222 (2005). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00040600222
  5. M. Crobu, A. Scorciapino, B. Elsener, and A. Rossi, The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys, Electrochimica Acta, 53, 3364 (2008). Doi: https://doi.org/10.1016/j.electacta.2007.11.071
  6. B. Bozzini, C. Lenardi, M. Serra, and A. Fanigliulo, Electrochemical and X-ray photoelectron spectroscopy investigation into anodic behaviour of electroless Ni-9.5 wt-%P in acidic chloride environment, British Corrosion Journal, 37, 173 (2002). Doi: https://doi.org/10.1179/000705902225006589
  7. H. Ashassi-Sorkhabi and S. H. Rafizadeh, Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits, Surface and coatings Technology, 176, 318 (2004). Doi: https://doi.org/10.1016/S0257-8972(03)00746-1
  8. G. Jiaqiang, W. Yating, L. Lei, S. Bin, and H. Wenbin, Crystallization temperature of amorphous electroless nickel-phosphorus alloys, Materials Letters, 59, 1665 (2005). Doi: https://doi.org/10.1016/j.matlet.2004.11.064
  9. H. S. Yu, S. F. Luo, and Y. R. Wang, A comparative study on the crystallization behavior of electroless Ni-P and Ni-Cu-P deposits, Surface and coatings technology, 148, 143 (2001). Doi: https://doi.org/10.1016/S0257-8972(01)01345-7
  10. D. Tachev, J. Georgieva, and S. Armyanov, Magnetothermal study of nanocrystalline particle formation in amorphous electroless Ni-P and Ni-Me-P alloys, Electrochimica acta, 47, 359 (2001). Doi: https://doi.org/10.1016/S0013-4686(01)00587-4
  11. L. Wang, Y. Gao, T. Xu, and Q. Xue, Corrosion resistance and lubricated sliding wear behaviour of novel Ni- P graded alloys as an alternative to hard Cr deposits, Applied Surface Science, 252, 7361 (2006). Doi: https://doi.org/10.1016/j.apsusc.2005.08.040
  12. M. Yan, H. G. Ying, and T. Y. Ma, Improved microhardness and wear resistance of the as-deposited electroless Ni-P coating, Surface and Coatings Technology, 202, 5909 (2008). Doi: https://doi.org/10.1016/j.surfcoat.2008.06.180
  13. C. J. Lin and J. L. He, Cavitation erosion behavior of electroless nickel-plating on AISI 1045 steel, Wear, 259, 154 (2005). Doi: https://doi.org/10.1016/j.wear.2005.02.099
  14. Y. J. Kim, I. J. Son, and S. Yi, Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers, Korean Journal of Materials Research, 27, 409 (2017). Doi: https://doi.org/10.3740/MRSK.2017.27.8.409
  15. A. Biswas, S. K. Das, and P. Sahoo, Correlating tribological performance with phase transformation behavior for electroless Ni-(high) P coating, Surface and Coatings Technology, 328, 102 (2017). Doi: https://doi.org/10.1016/j.surf-coat.2017.08.043
  16. W. Sha, X. Wu, and W. Sarililah, Scanning electron microscopy study of microstructural evolution of electroless nickel-phosphorus deposits with heat treatment, Materials Science and Engineering: B, 168, 95 (2010). Doi: https://doi.org/10.1016/j.mseb.2009.10.036
  17. W. J. Tomlinson and G. R. Wilson, The oxidation of electroless Ni-B and Ni-P coatings in air at 800 to 1000 ℃, Journal of materials science, 21, 97 (1986). Doi: https://doi.org/10.1007/BF01144705
  18. M. Sribalaji, P. Arunkumar, K. S. Babu, and A. K. Keshri, Crystallization mechanism and corrosion property of electroless nickel phosphorus coating during intermediate temperature oxidation, Applied Surface Science, 355, 112 (2015). Doi: https://doi.org/10.1016/j.apsusc.2015.07.061
  19. X. Xiu-qing, M. Jian, B. Zhan-quan, F. Yao-rong, M. Qiu-rong, and Z. Wen-zhen, The corrosion behaviour of electroless Ni-P coating in Cl- /H2S environment, Applied surface science, 258, 8802 (2012). Doi: https://doi.org/10.1016/j.apsusc.2012.05.094
  20. M. Erming, L. Shoufu, and L. Pengxing, A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings, Thin Solid Films, 166, 273 (1988). Doi: https://doi.org/10.1016/0040-6090(88)90388-4
  21. S. Eraslan and M. urgen, Oxidation behavior of electroless Ni-P, Ni-B and Ni-W-B coatings deposited on steel substrates, Surface and Coatings Technology, 265, 46 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.01.064
  22. K. Cheng and Z. Wu, Z., Effect of heat treatment on the microstructure and mechanical properties of electroless nickel-phosphorus coatings, Journal of Physics: Conference Series, 1520, 012002 (2020). Doi: https://doi.org/10.1088/1742-6596/1520/1/012002
  23. M. Palaniappa and S. K. Seshadri, Hardness and structural correlation for electroless Ni alloy deposits, Journal of materials science, 42, 6600 (2007). Doi: https://doi.org/10.1007/s10853-007-1501-5
  24. L. Chang, P. W. Kao, and C. H. Chen, Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains, Scripta Materialia, 56, 713 (2007). Doi: https://doi.org/10.1016/j.scriptamat.2006.12.036
  25. Y. F. Shen, W. Y. Xue, Z. Y. Liu, and L. Zuo, Nanoscratching deformation and fracture toughness of electroless Ni-P coatings, Surface and Coatings Technology, 205, 632, (2010). Doi: https://doi.org/10.1016/j.surfcoat.2010.07.066
  26. T. Rabizadeh, S. R. Allahkaram, and A. Zarebidaki, An investigation on effects of heat treatment on corrosion properties of Ni-P electroless nano-coatings, Materials and Design, 31, 3174 (2010). Doi: https://doi.org/10.1016/j.matdes.2010.02.027
  27. I. C. Park and S. J. Kim, Cavitation Erosion Damage Characteristics of Electroless Nickel Plated Gray Cast Iron, Acta Physica Polonica A, 135, 1018 (2019). Doi:https://dx.doi.org/10.12693/APhysPolA.135.1018