• Title/Summary/Keyword: Platform screen door system

Search Result 59, Processing Time 0.025 seconds

The Interface Scheme and Application Between Rolling Stock System and PSD (철도차량시스템과 PSD간 인터페이스 방안 및 적용 현황)

  • Lee Jong-Seong;Min Young-Ki;Kim Kyoung-Shik;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1510-1512
    • /
    • 2004
  • Platform Screen Door System is a facility on platform to separate platform from track, having automatic sliding door structures interlocked to opening and closing of train door with integrated control unit. When a train comes to a stop at a designed position at a station, onboard ATC/ATO system transmits train berth signal to wayside signaling system. In case of automatic/driverless operation, opening and closing of the Platform Screen Door will be controlled by wayside signaling system. Unfortunately, we often see the case in news that passengers fall into track and their contact with train lead to critical accidents. However, passengers will be free from such accidents on the platform with the Platform Screen Door System. Especially during the rush hours, to ensure passenger's safety and smooth getting on & off, it is necessary to arrange. some station staffs on the platform without the Platform Screen Door System. On the other hand, the Platform Screen Door System will realize such operation by fewer staffs. Due to the above reasons, the Platform Screen Door System is becoming more popular in subway system recently.

  • PDF

Development of Optimum Design Technology of Platform Screen Door Systems for the Environment Improvement and Disaster Prevention of Urban Railway (도시철도 환경개선 및 방재를 위한 스크린도어시스템 최적설계기술 개발)

  • Kim, Jung-Yup
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.84-87
    • /
    • 2008
  • In order to maximize the effect of installing screen door system while to minimize the problems in an initial stage of introduction, it is strongly required to research an optimum installation solution in connection with ventilation and disaster prevention system alongside with safety structure analysis of screen door in respect to train-induced wind, as well as to develop the criteria for the operation after the installation. This paper presents the results of study to develop the optimum design technology in urban railway equipped with platform screen door systems.

  • PDF

The Development of DCU for the Platform Screen Door (승강장 스크린 도어용 제어장치의 개발)

  • Woo, Chun-Hee;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.68-71
    • /
    • 2011
  • In the case of Seoul Metro, prior to installation of platform screen doors, had seen 4~6 cases a month of mortal injuries from accidents on the platforms, including suicide attempts towards the oncoming train. However, since the installation of platform screen doors, Seoul Metro has achieved a feat of '0 mortal injuries'. In the initial stages of introducing platform screen doors domestically, due to a lack of experience in controlling platform screen doors, the products were imported and installed through technical cooperations from Japan, France and the United States. Thereafter, following investments in technologies by domestic firms, domestic production of parts such as overall control mechanism, specific control mechanism, RF devices and others were achieved. However, having installed platform screen doors in a relatively short period of time, DCU(Door Control Unit), an integral part of the whole platform screen door system, is yet to be fully domestically produced. At this moment in time, installation is being done with imported products or DCUs developed with DC motors. In this research, advantages and disadvantages of DC and BLDC motors for use in DCU will be analyzed and will produce an own BLDC controlling unit in order to solve any problems arised. Furthermore, the BLDC controlling unit produced will be integrated with DCU to improve the performance of the product and its price competitiveness.

Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System (스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석)

  • Kim Jung-Yup;Kim Kwang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

Study on the Evacuation Time Analysis by Platform Screen Door Opening Rate (스크린도어(PSD)의 개폐율에 따른 피난소요시간 분석에 관한 연구)

  • Kim, Min-Jae;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.59-64
    • /
    • 2016
  • The PSD (Platform Screen Door System) has been installed to enhance the passengers' safety. A total of 592 stations operate the PSD system, which is almost 71.8% of all stations in South Korea. This study compared the opening rate between the PSD and train door, and calculated the exact amount of passengers at peak time. In addition, the evacuation time was simulated by Pathfinder 2015 with the exact input data. Some of the high density stations have extremely high dangerous points about the passengers' evacuation at some situations by the PSD door opening rate. In particular, due to the interference of a fixed door, when it stops at 7 m less than the regular position, its opening rate becomes less than half of the normal state. To solve this problem, it should be made possible to open the fixed door by changing it to an emergency door or improving the PSD module system.

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

A Case Study on System Assurance for Platform Screen Door in Urban Transit (도시철도 승강장 스크린도어의 시스템보증 사례 연구)

  • Lee, Hwan-Deok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.287-298
    • /
    • 2013
  • This paper presents a case study of PSD(Platform Screen Door) system assurance based on EN50126 life-cycle stage. By applying this system assurance, the accidents related to urban light transit railway especially that caused casualties could be reduced tremendously. This case study contributes significantly to the reliability, availability, maintainability and safety of the PSD system. Request For Proposal (RFP) of a rail road operator in which required by RAMS is prepared in which to ensure all system assurance activity and safety assessment are compulsory. The step-by-step activities and related deliverables are used which include functional analysis, FMECA, hazard identification analysis, system hazard analysis, maintainability analysis, FRACAS, and finally verification and validation of the system.

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

A Study on The Sign System Following Installation of Screen Doors in Subway Platforms (지하철 승강장 스크린도어 설치에 따른 사인시스템에 관한 연구)

  • Shin, Hong-Jae;Park, Hee-Myeon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.290-295
    • /
    • 2007
  • The Seoul Metropolitan Subway Corp. have gradually installed screen doors in platforms of 115 subway stations in Seoul on lines 1, 2, 3, and 4. Installation in nine areas among those has been completed and screen doors are being operated as a model operation. Traffic signs should be clear for users. The essential functions of signs should be fully investigated from the aspect of user as well as the visual beauty and recognition. Signs should be able to provide users with information regarding location, position, directions, etc. Particularly, safety and convenient signs should be visually and sensually correlated. However, the entire screen doors in platforms installed in line 2 subway in Seoul are used for commercial advertisement, consequently, the functions and roles as public signs are not fulfilled aggravating inconvenience for users. In this study, cases have been studied to investigate requirements for user-oriented sign system in platform and public sign space to fulfill the functions of sign system in platform. Using an anthropometry approach, the study aimed to obtain the space to install the sign system and to systemize necessary and sufficient conditions for user-oriented system for platform in which screen doors have been installed using. The study suggests fundamental information to obtain the space of public sign system on the entire screen door.

Commercialization of Integrated DCU for the Platform Screen Door (승강장 스크린도어를 위한 통합형 제어기의 상품화)

  • Woo, Chun-Hee;Kim, Jin-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.110-113
    • /
    • 2011
  • Platform Screen Door, PSD, is a device that seeks to prevent accidents with regards to falling off the platform and getting trapped between the trains, achieve improvements on the cleanliness of the air, address the accessibility issue of the disabled and the elderly and provide fresher environment on the platform in general. This is achieved by preventing health hazards and accidents from occurring through installation of fixed and moving doors between rail, tram and subway platforms and the railway. Domestic firms have achieved domestic production to a large degree in various Control Units including the Overall Control Unit and RF devices through investments in technology. Despite this, full domestic production of the core of the PSD system, Door Control Unit, DCU, is not yet achieved, having to install PSDs in a relatively short period of time. Currently, controllers with DC motors are developed for installation or one is faced with having to import foreign produced controllers. In this research, the control unit prototype using the BLDC motor was domestically produced. The performance of the control unit was rigorously tested through installation on Eun-Ha Rail on Wol-Mi Island.