• 제목/요약/키워드: Plate impinging

검색결과 228건 처리시간 0.026초

Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구 (A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method)

  • 서정일;송동주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

2차원 채널 충돌제트에서 난류강도의 변화에 대한 유동 및 열전달 특성 (A Characteristics of Flow and Heat Transfer for Variation of Turbulence Intensity In the Two-Dimensional Channel Impinging Jet)

  • 윤순현;김동건;김문경
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.753-760
    • /
    • 1999
  • Experiments were conducted to investigate the effect of the initial turbulent intensity on the flow and heat transfer characteristics for a two-dimensional impinging jet. A square rod was installed at the nozzle exit to increase initial turbulent intensity. A hot wire probe and thermochromic liquid crystal technique were used to measure the turbulent intensity and the surface temperature. All measurements were made over a range of nozzle-to-plate distance from 1 to 10 at Re=20,000. When the rod is not installed, the maximum stagnation point Nusselt number is occurred at H/B=9. A higher initial turbulent intensity enhanced the heat transfer on the surface. A correlation between stagnation point Nusselt number and turbulent intensity are presented.

평면제트와 충돌면과의 거리변화에 따른 열전달 특성 (Heat Transfer characteristics of distance between impinging surface and a plane jet)

  • 김동건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.588-594
    • /
    • 1998
  • Heat transfer characteristics of distance between impinging surface and a plane jet were experi-mentally investigated. The local heat transfer coefficients were measured by a thermochromic liq-uid crystal(TLC) The jet Reynolds number studied was varied over the range from 10,000310 to 30,000310 the nozzle-to-plate distance (H/B) from 4 to 10. It was observed that the Nusselt number increases with Reynolds number the occurrence of the secondary peak in the Nusselt number is within the potential core region the potential core of the jet flow can reach the impinging surface so that the wall jet can a transition from laminar to turbulent flow resulting in a sudden increase in the heat transfer rate.

  • PDF

표면 젖음성이 스프레드-스플래시 영역 간 천이 조건에 미치는 효과 (Surface Wetting Effect on Spread-Splash Transition Criterion)

  • 류성욱;이상용
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.198-203
    • /
    • 2007
  • In the present work, surface wetting effect on spread-splash regime and transition criterion of the water and ethanol droplets impacting an unheated dry wall has been experimentally investigated. The droplet was directed on a polished STS plate and a glass slide, and the impinging behavior was visualized and recorded using a CCD camera. Droplet diameter and velocity approaching the wall were measured as well. The critical Sommerfeld number representing the spread-splash boundary for the ethanol droplet impinging on the substrates turned out to be smaller compared to that for the water droplet impinging on the substrates with the surface roughness condition remained unchanged. The shift of the transition boundary is considered to be due to the effect of the surface wettability represented by static contact angle and surface tension of droplet.

  • PDF

POD 기법을 이용한 저 레이놀즈 수 충돌 제트의 비정상 거동 연구 (Investigation on the Unsteadiness of a Low Reynolds Number Confined Impinging Jet using POD Analysis)

  • 안남현;이인원
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.34-40
    • /
    • 2008
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated in low Reynolds number regime (Re$\leq$1,000) by using time-resolved particle image velocimetry technique. The jet Reynolds number was varied from 404 to 1026, where it is presumed that the transient regime exists. It is found that the vortical structures in the shear layer are developed with increasing Reynolds number and that the jet remains steady at the Reynolds number of 404. Vortical structures and their temporal evolution are verified and the results were compared with previous numerical studies.

단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군- (Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets-)

  • 엄기찬;이종수;금성민
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

난류촉진체 형상에 의한 충돌제트의 열유동 특성 (Thermal Flow Characteristics of Impinging Air Jet by Shape of Turbulence Promoter)

  • 금성민;조시기;유병훈;이승로
    • 에너지공학
    • /
    • 제21권2호
    • /
    • pp.187-193
    • /
    • 2012
  • 본 연구의 목적은 벽면제트영역의 열전달증진을 위해 직삼각형 로드 및 정사각형 로드를 충돌판앞에 배열한 후 로드와 충돌판 사이의 간극을 변화시키면서 열유동 특성을 실험적으로 검토한 것이다. 열전달증진율은 천이영역인 H/B=10보다는 포텐셜코어영역인 H/B=2에서 더 높게 나타났다. 본 실험범위에서 최대 열전달증진율은 직삼각형 로드를 설치할 때(H/B=2, C=1mm인 조건) 로드가 없는 평판과 비교하면 평균 약 46% 높게 나타났다. 그리고 직삼각형 로드와 정사각형 로드의 열전달증진율을 비교하면 간극 변화와 관계없이 직삼각형 로드가 정사각형 로드보다 평균 약 3~8% 정도 높게 나타났다.

삼각형 멀티 탭을 이용한 충돌제트 열전달 향상 연구 (Enhancement of Impinging Jet Heat Transfer Using Triangular Multi-Tabs)

  • 이정욱;이상준
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1139-1146
    • /
    • 2004
  • The effect of triangular tabs attached at the perimeter of jet nozzle on heat transfer enhancement was investigated experimentally. The modified flow structure was visualized using a smoke-wire method. Four different types of jet nozzle having 0, 4, 6 and 8 tabs were tested at jet Reynolds number Re=15,000 to investigate the effect of tabs on the variation of heat transfer rate. The local and average Nusselt numbers are increased with increasing the number of tabs. At nozzle-to-plate distance of L/D=4, the average Nusselt number was increased about 9.9% at Re=15,000 in the impingement region for the case of 8 tabs attachment. As the nozzle-to-plate distance increases, however, the heat transfer enhancement effect of triangular tabs is reduced. For the case of 4 tabs, the heat transfer enhancement is not so distinctive at L/D=8. As the protrusion depth of tabs into the jet flow increases, the heat transfer rate is also enhanced when the nozzle-to-plate distance is smaller than L/D=6.

배열 슬롯제트의 노즐간격 변화에 따른 충돌면에서의 열전달 특성 (Heat transfer characteristics of impinging flat plate of multiple slot jets by changing of jet-to-jet distance)

  • 정인기;박시우;홍성호;고완욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.534-539
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics on confined jet impinging plate using multiple slot jets has been performed. The effects of jet Reynolds numbers(Re=2000, 3950, 5900, 7900), dimensionlesss slot-to-plate distances(H/B=2, 4, 6, 8) and jet-to-jet distances(S=16B, 20B, 24B, 30B) on the local and average heat transfer coefficients have been examined. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. From the experimental results, it was found that the local and average heat transfer rates increase with increasing jet Reynolds number. Measurements of local heat transfer coefficients produced by multiple of slot jets have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. At S/B=20, Re=7900 and H/B=6, maximum average Nusselt number is obtained.

  • PDF

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 - (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation -)

  • 황상동;이창호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.