• 제목/요약/키워드: Plate Structures

Search Result 2,396, Processing Time 0.192 seconds

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion (Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가)

  • Kim, Sang-Young;Park, Hong-Sun;Kang, Min-Sung;Lee, Woo-Hyung;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle

  • Chung, Min-Ho;Lee, Hee-Jun;Kang, Yeon-Cheol;Lim, Woo-Bin;Kim, Jeong-Ho;Cho, Jin-Yeon;Byun, Wan-Il;Kim, Seung-Jo;Park, Sung-Han
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-198
    • /
    • 2012
  • Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.

Experimental and Application Examples of Composite Beams Strengthened by Lower End Compression Member and Upper Tension Reinforcement (단부 하부 압축재와 상부 인장 철근으로 보강한 합성보의 실험 및 적용 사례 연구)

  • Oh, Jung-Keun;Shim, Nam-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • The BX composite beam is designed to have the same cross-section regardless of the size of the momentum, which is a disadvantage of the existing steel structure. Combination of the H-beam end compressive material and the H-section steel tensile reinforcement according to the moment size in a single span, It is possible to say that it is an excellent synthesis which increases the performance. When underground and overhead structures are constructed, it is possible to reduce the bending, increase lateral stiffness, reduce construction cost, and simplify joints. The seamability of the joining part is a simple steel composite beam because of the decrease of the beam damping at the center of the beam and the use of the end plate of the new end compressing material. In the case of structures with long span structure and high load, it is advantageous to reduce the material cost by designing large steel which is high in price at less than medium steel.

Study on Stiffened-Plate Structure Response in Marine Nuclear Reactor Operation Environment

  • Han Koo Jeong;Soo Hyoung Kim;Seon Pyoung Hwang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.205-214
    • /
    • 2023
  • As the regulations on greenhouse gas emissions at sea become strict, efforts are being made to minimize environmental pollutants emitted from fossil fuels used by ships. Considering the large sizes of ships in conjunction with securing stable supplies of environment-friendly energy, interest in nuclear energy to power ships has been increasing. In this study, the neutron irradiation that occurs during the nuclear reactor operation and its effect on the structural responses of the stiffened-plate structures are investigated. This is done by changing the material properties of DH36 steel according to the research findings on the neutron-irradiated steels and then performing the structural response analyses of the structures using analytical and finite-element numerical solutions. Results reveal the influence of neutron irradiation on the structural responses of the structures. It is shown that both the strength and stiffness of the structures are affected by the neutron-irradiation phenomenon as their maximum flexural stress and deflection are increased with the increase in the amount of neutron irradiation. This implies that strength and stiffness need to be considered in the design of ships equipped with marine nuclear reactors.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Visual Evaluation of Rib Shadow and Lung Marking during High-voltage Chest Radiography (흉부 고관전압 촬영에 있어서의 늑골음영과 폐문리의 시각적 평가)

  • Choi, Kwon-Kyu;Lee, Chang-Yup;Shin, Dong-Sik;Kim, Chang-Nam;Choi, Ki-Young;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 1992
  • Visual evaluation of rib shadow and lung marking during high voltage chest radiography. The Purpose of this study is to improvement of visual discrimination of pulmonary structures on the conventional chest radiogram. The author prepared an artificial lung using an acryl plate, 8 cm in thickness, which is nearly equivalent to human lung, and 0.6 cm thickness of an aluminum plate for an artificial rib, and 0.5 cm of an acryl plate as a pulmonary vessel as well. And they were used as objects for experimental radiograms. This study performed with gradual increasing densities of film bases in the sequences of densities of 0.6, 0.9, 1.1 and 1.3. We made two combinations of images after multiple and regular cuts, with width of 1 cm, of 4 radiograms at the above mentioned densities of film bases. One image consisted of alternative combination of radiograms taken at densities of 0.6 and 1.3, and the other did at 0.9 and 1.1. The latter image provided better visual perception of pulmonary structures than the former. Experimental radiograms were also taken with 60 kV and 120 kV respectively. After careful evaluation and comparison to images taken on varieties of different densities with combinations and kV, the author had a conclusion that it is advisable to use a high kV X-ray which makes rib shadow subtle, for better visual delineation of pulmonary structures behind ribcage, eventhough contrast of pulmonary structures are decreased at high kV radiogram.

  • PDF

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.