• 제목/요약/키워드: Plate Stacking

검색결과 99건 처리시간 0.019초

변수 식별을 통한 복합재의 적층판의 고유진동수 예측 개선 (Improvement of the Prediction of Natural Frequencies Of Composite Laminated Plate Using Parametric Identification)

  • 홍단비;유정규;김승조
    • Composites Research
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 1999
  • 복합재 적층판의 기계적 특성값 $E_1,\;E_2,\;V_{12},\;G_{12}$을 설계변수로 하는 변수식별을 수행하여 동적 거동을 보다 정확하게 예측할 수 있는 동적 모델을 확보하였다. 간단한 진동실험을 통해 고유진동수를 측정한 후 대상구조물에 대한 고유치의 실험값과 수치해석값 사이의 오차들의 합으로 목적함수를 구성하였다. 목적함수를 최소화하기 위해 최적화 방법으로 conjugate gradient method를 사용하였다. 최적화 과정 중 설계변수를 증감시키기 위해 민감도 해석이 수행된다. 민감도 해석을 통해 변수식별 결과도 설명할 수 있었다. 변수식별 결과의 타당성을 검토하기 위해 식별전후의 모드형상을 비교하였다. 식별된 기계적 특성값을 사용하여 보다 정확하게 복합재 적층판의 고유진동수를 예측할 수 있었다. 결과의 적용을 위해 식별된 기계적 특성값을 사용하여 다른 적층순서를 가진 복합재 적층판의 고유진동수를 예측해 보고 실험결과와 비교해 보았다.

  • PDF

수평감쇠판 길이에 따른 하이브리드 부유식 구조물의 거동 특성 분석 (Hydrodynamic Response Analysis of Hybrid Floating Structure according to Length of Damping Plate)

  • 박민수;정연주;김영택
    • 한국해안·해양공학회논문집
    • /
    • 제34권6호
    • /
    • pp.275-289
    • /
    • 2022
  • 최근 연안에서 해상관광레저, 플로팅 건축 등의 사업발굴이 활발히 진행 중에 있어 해상조건에 적합한 부유식 구조물의 필요성이 대두되고 있다. 본 연구에서는 육상 이동이 가능한 단위 모듈의 수직 및 수평 적층으로 확장된 하이브리드 부유식 구조물의 안정성을 향상시키기 위해 수평감쇠판을 적용하였다. 적용된 수평감쇠판의 길이 변화에 따른 하이브리드 부유식 구조물의 거동 특성을 상용 프로그램인 ANSYS AQWA를 이용하여 분석하였다. 하지만 제안된 하이브리드 부유식 구조물의 경우 구조물에 의해 둘러싸인 유체영역이 존재하고 이로 인해 특정 주기에서 공진이 발생할 가능성이 있다. 따라서 구조물에 의해 둘러싸인 유체영역에 ANSYS AQWA에서 제공되는 감쇠존 효과를 고려하여 부유식 구조물의 거동 특성을 주파수 영역 수치해석을 통해 면밀하게 분석하였다.

Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory

  • Chattibi, F.;Benrahou, Kouider Halim;Benachour, Abdelkader;Nedri, K.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.93-110
    • /
    • 2015
  • The thermomechanical bending response of anti-symmetric cross-ply composite plates is investigated by the use of the simple four variable sinusoidal plate theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. The validity of the present theory is demonstrated by comparison with solutions available in the literature. Numerical results are presented to demonstrate the behavior of the system. The influences of aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the thermally induced response are studied. The present study is relevant to aerospace, chemical process and nuclear engineering structures which may be subjected to intense thermal loads.

적층복합재의 자유단 박리에 대한 모드별 스트레인 에너지해방률의 간이계산법 (A Simplified Method for Determining Modal Strain Energy Release Rate of Free-Edge Delaminations in Laminated Composite)

  • 김택현;오택열;김인권
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.423-429
    • /
    • 1997
  • A simplified method for determining the mode components of the strain energy release rate of free-edge delaminations in laminated composite is proposed. The interlaminar stresses are evaluated as an interface moment and interface shear forces that are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expression for the three components of the strain energy release rate. Comparison of results with a finite element solution using the virtual crack closure technique shows good agreement. In the present study, laminated composite with stacking sequences of [30/-30/90]$_{s}$ were examined. The simple nature of the method makes it suitable for primary design analysis for the delaminations of laminated composite.e.

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

완전 자동화된 단속형 가변적층쾌속조형공정을 위한 절단 경로 데이터 생성 (Generation of cutting Path Data for Fully Automated Transfer-type Variable Lamination Manufacturing Using EPS-Foam)

  • 이상호;안동규;김효찬;양동열;박두섭;심용보;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.599-602
    • /
    • 2002
  • A novel rapid prototyping (RP) process, an automated transfer type variable lamination manufacturing process (Automated VLM-ST) has been developed. In Automated VLM-ST, a vacuum chuck and linear moving system transfer the plate type material with two pilot holes to the rotation stage. A four-axis synchronized hotwire cutter cuts the material twice to generate Automated Unit Shape Layer (AUSL) with the desired width, side slopes, length, and two reference shapes in accordance with CAD data. Each AUSL is stacked on the stacking plate with two pilot pins using the pilot holes in AUSL and the pilot pins. Subsequently, adhesive is supplied to the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously applied to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly fabricated. This paper describes the procedure for generating the cutting path data (AUSL data) f3r automated VLM-ST. The method for the generation of the Automated Unit Shape Layer (AUSL) in Automated VLM-ST was practically applied and fabricated for a various shapes.

  • PDF

적층형 디지털송수신모듈의 방열특성 분석 (Analysis on Heat Dissipation Characteristics of a Tile-Type Digital Transmitter/Receiver Module)

  • 윤기철;김상운;허재훈;곽노진;김찬홍
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.249-254
    • /
    • 2019
  • A Digital Transmitter/Receiver Module(DTRM), which is an essential part in active phased-array radar systems, generates a high heat density, and needs to be properly cooled for stable operation. A tile-type DTRM that is a stacking structure of multi-layer components was modeled with simplification and heat dissipation characteristics of the DTRM model were studied using computational fluid dynamics(CFD) simulations. Most of the heat was dissipated by the heat conduction through the cold plate, but the heat transfer by the forced convection on top of the DTRM also was found to play an important role in the thermal management. Under the given conjugated heat transfer environment, the DTRM was confirmed to secure a stable operating temperature range.

Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment

  • Mahesh, Vinyas;Kattimani, Subhaschandra;Harursampath, Dineshkumar;Trung, Nguyen-Thoi
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.267-292
    • /
    • 2019
  • The present article addresses the coupled free vibration problem of skew magneto-electro-elastic plates (SMEE) considering the temperature-moisture dependent material properties. The plate kinematics follows Reddy's higher order shear deformation theory. With the aid of finite element methods, the governing equations of motion are derived considering the Hamilton's principle and solved by adopting condensation technique. The influence of different temperature and moisture dependent empirical constants on the frequency response of SMEE plate has been assessed. In addition, the natural frequencies corresponding to various fields are evaluated and the effect of empirical constants on these coupled frequencies is determined. A detailed parametric study has been carried out to assess the individual effects of temperature and moisture dependent empirical constants along with their combined effect, aspect ratio, length-to-width ratio, stacking sequence and boundary conditions. The results reveal that the external environment as well as the geometrical skewness has a significant influence on the stiffness of the SMEE plates.

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri;K., Madani;S.CH., Djebbar;M., Belhouari;R.D.S.G., Campliho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.799-811
    • /
    • 2022
  • Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.