• Title/Summary/Keyword: Plastics Processing

Search Result 94, Processing Time 0.029 seconds

Introduction to Plastics Processing and Its Research Trend (플라스틱 성형법의 개요와 연구동향의 고찰)

  • 류민영
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.651-667
    • /
    • 2002
  • Overview of plastics processing is described and the research trend of the processing is also noted. The main manufacturing processes in the plastics industry are injection molding, blow molding, compression molding, transfer molding, extrusion and thermoforming. The principles of those processes have been discussed and molds for shaping operation have been mentioned. References for each process have also been presented.

Comprehensive Wear Study on Powder Metallurgical Steels for the Plastics Industry, Especially Injection Moulding Machines

  • Gornik, Christian;Perko, Jochen
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.399-400
    • /
    • 2006
  • M390 microclean(R) of $B{\ddot{o}}hler$ Edelstahl is a powder metallurgical plastic mould steel with a high level of corrosion and wear resistance and therefore often used in the plastics processing industry. But as a consequence of rapidly advancing developments in the plastics processing industry the required level of wear resistance of tool steels in this field is constantly rising. For that reason a new PM tool steel with higher hardness values and an increased amount of primary carbides has been developed to improve the resistance against abrasive and adhesive wear. The wear resistance of both steels against adhesive situations for components of the plastification unit of injection moulding machines has been tested with a novel method. In case of processing polyolefins with an injection moulding machine it was found that there is adhesive wear between the check-ring and the flights of the screw tip of the non-return valve under certain circumstances. The temperature in that region was measured with an infrared temperature sensor. The existence of significant peaks of that signal was used as an indicator for an adhesive wear situation.

  • PDF

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States (결정성 수지의 발포특성)

  • Lee, Bo-Hyoung;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

Trends in Development and Marketing of Degradable Plastics (분해성 플라스틱의 개발 및 시장 동향)

  • You, Young-Sun;So, Kyu-Ho;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.365-374
    • /
    • 2008
  • Plastics are comparatively new polymeric materials that are manufactured by chemical synthesis, making them different from natural materials such as wood, paper, stone, metal, and glass. Due to a wide range of properties, including processing capabilities and duration, plastics have become rapidly ubiquitous, being used in all industries, and have improved our quality of life. However, it is true that plastics cause environmental contamination problems that have become important social issues, such as environmental hormone leakage due to incineration or reclamation, difficulty in securing reclamation sites, and deadly poisonous dioxin generated by the incomplete incineration of waste plastic materials. To solve these problems, it is urgent to develop and commercialize degradable plastics that can be stably and conveniently used just as general plastics, and that are easily decomposed by sunlight, soil microbes, and heat generated from reclaimed land after use. This review presents recent worldwide trends in the development and marketing of environmentally degradable plastics.

The Insulation Property of Microcellular Injection Molding Plastics (초미세 발포 사출 성형품의 단열 특성)

  • Lee, Jung-Hyun;Hong, Soon-Kug;Kim, Ji-Hyun;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.263-268
    • /
    • 2001
  • MCPs means Micro Cellular Plastics. The micro-cells are generated in the products by the difference of dissolution through the pressure drop after super critical fluid of CO2 or N2 dissolves into polymer. We have developed injection molding process adopting MCPs and applied it to a broad range of injection molded thermoplastic materials and applications. It can prevent the leakage of impact strength and increase the thermal conductivity, moreover regulate the thermal conductivity. Then we can develop the high strength foaming plastics. Also, it can be gained a competitive advantage by utilizing its processing benefits, e.g. the lightweight products and significant reductions in material consumption.

  • PDF

Effect of Talc on cell density in foam processing with CO2 (Talc 함유량이 초미세 발포 셀-밀도에 미치는 영향)

  • 이보형;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1406-1409
    • /
    • 2003
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts, for material cost constitutes a large percentage of the total cost of 60%. It may be noted that the price of plastics is directly rotated to the price of petroleum. Material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore microcellular foaming process(MCPs) was studied for solving this problems alternatively in 1980's at M.I.T Until now in MCPs carbon dioxide gas was mainly used for microcellular foaming. Besides, Talc was used for reducing the price of plastics. Consequently, we must certificate using the Talc in MCPs according to contents of the Talc.

  • PDF

Jig Separation of Plastic Waste Used in Copy Machines

  • Tsunekawa, Masami;Naoi, Banryu;Takubo, Tetsuo;Hirajima, Tsuyoshi;Hiroyoshi, Naoki;Otani, Masaru;Miyamoto, Masahiro;Ito, Masazumi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.592-596
    • /
    • 2001
  • A TACUB jig was applied to separate waste plastics [polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate (PET)] used in copy machine. The effect of water pulsation including amplitude and frequency on the separation performance was investigated for the feeds containing two or three plastics. Good results are obtained under suitable conditions. Grades of 99.8% PS,99.3% ABS, and 98.6% PET are recovered as the products in the upper, middle and bottom layers respectively. Based on these results, a processing plant fer recycling of plastics from scrapped copy machines is now under construction.

  • PDF

Methods of Separating Used Plastics for Recycling (폐플라스틱의 선별기술)

  • 윤여환
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Plastics waste constitutes approximately 23% by volume of the municipal solid waste(MSW) generated in the U.S. each year, and have slow rate of degradation in the environment. Therefore, there is a great deal of public pressure to recycle plastics, and more than 100 million people participate in the curbside recycling programs. Despite the high level of public interest, only 3.5% of the plastic are recycled, which is substantially lower than the recycle rates of other materials such as paper fibers, glass, and iron. Although a large part of the reason is due to the low price of virgin polymers, which in turn is due to the low price of oil, it is possible to make the plastics recycling as a profitable business by developing advanced technologies. In this communication, various methods of separating pplastics from metals and from each other are discussed.

  • PDF