• Title/Summary/Keyword: Plastic strain amplitude

Search Result 39, Processing Time 0.028 seconds

Mechanical Behavior Evaluation and Structural Analysis of 316 Stainless Steel at High Temperature (316 스테인리스강의 고온 물성 연구 및 구조 평가)

  • Rhim, Sung-Han;Lee, Kwang-Ju;Kim, Jin-Bae;Yang, In-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.181-184
    • /
    • 2008
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue behavior of 316 stainless steel was studied at wide temperature range $20^{\circ}C{\sim}750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreases when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude and plastic strain energy density was also investigated. With the experimental results, a structural analysis of turbine blades of 316 stainless steel were carried out.

  • PDF

Low Cycle Fatigue Characteristics of the Railway Wheels and Axles (차륜 및 차축 재료의 저주기 피로특성)

  • Kim D. J.;Seok C. S.;Seo J. W.
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.427-433
    • /
    • 2005
  • Railway wheelset is the most essential part which undergoes severe cyclic loadings. In recent years, there has been increasing need for insuring the safety of running as the speed of the railway vehicles is getting higher. So it is required on the assessment of fatigue characteristics of the wheelset to consider plastic deformation which might be probable in the severe loading condition. In this study, total-strain controlled low cycle fatigue(LCF) test were performed to observe the LCF behaviors of the railway wheels and axles using companion specimens method. From the experimental results, the cyclic mechanical properties have been evaluated and total strain amplitude versus life relationship have been derived using the empirical Coffin-Manson law.

  • PDF

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Development of Constitutive Equation for Soils Under Cyclic Loading Conditions (反復荷重을 받는 흙의 構成關係式 開發)

  • Jang, Byeong-Uk;Song, Chang-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Three-Point Bending Fatigue Properties of Austenitic 304 Stainless Steel Sheets for Membrane (Membrane용 오스테나이트계 304 스테인리스강 판재의 3점 굽힘피로 특성)

  • Lee Tae-Ho;Kim Sung-Joon;Kim Hyoung-Sik;Kim Cheol-Man;Hong Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.1-8
    • /
    • 1999
  • Three-point bending fatigue properties of austenitic 304 stainless steel sheets were investigated at room temperature and LNG temperature($-162^{\circ}C$) in the strain range from 0.43 to $1.7\%$. The fatigue properties at $-162^{\circ}C$ were superior to those at room temperature due to the higher volume fractions of deformation-induced martensite. The cyclic hardening behavior owing to the deformation- induced martensite transformation was detected in both specimens. In room temperature testing, the mean load amplitude increased steadily with cycles, meaning that cumulative plastic incubation strain was required for martensite transformation. On the contrary, in $-162^{\circ}C$ tested specimen, the mean load amplitude increased rapidly within a few cycles due to the rapid transformation of martensite, and slightly decreased after the maximum is reached probably due to dynamic recovery.

  • PDF

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

A Study on Fatigue Damage Modelling in Cold Rolled Steel using X-ray Residual Stress (X선 잔류응력을 이용한 냉간압연강의 피로손상 모델링에 관한 연구)

  • Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.55-62
    • /
    • 1999
  • Cold rolled steel has much plastic strain in the material surface produced by manufacturing process. The strain causes the variation of surface residual stress, in which influences the fatigue behavior under repeated loading. As experimental results, it was confirmed that the behavior of residual stress ${\sigma}_r$, with cycle N consisted of three stages except stress amplitude near fatigue limit in SPCC steel. On the first stage compressive residual stress decreased rapidly, on the second stage gradually, and on the last stage slightly. The relation between ${\sigma}_r$, and log N appeared linear behavior except the early part of cycle ratio $N/N_f$. The average gradient of ${\sigma}_r$, with respect to log N seemed to take a constant value without initial cycle ratio. On the other hand, the $N_f$ line was regressed by the first-order polynomial equation on ${\sigma}_r-log\;N_f$ diagram. Therefore, this study showed that both the gradient of ${\sigma}_r$, with respect to log N and the $N_f$ line was useful in predicting the cycle ratio $N/N_f$.

  • PDF

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.