• 제목/요약/키워드: Plastic plating

검색결과 57건 처리시간 0.024초

플라스틱 도금 기술에 대한 이해와 동향 (Understanding and trends in plastic plating technology)

  • 노지왕;배인경;김현우;김선규
    • 한국표면공학회지
    • /
    • 제57권4호
    • /
    • pp.225-233
    • /
    • 2024
  • The plastic plating process refers to coating a thin metal film onto a plastic surface. This technique has become essential for replacing costly metal products while maintaining equivalent performance, making plastic plating a critical technology. This paper presents an overview of the methods and future prospects of plastic plating.

An Environment-Friendly Surface Pretreatment of ABS Plastic for Electroless Plating Using Chemical Foaming Agents

  • Kang, Dong-Ho;Choi, Jin-Chul;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.174-177
    • /
    • 2010
  • We have developed an environment-friendly etching process, an alternative to the dichromic acid etching process, as a pretreatment of acrylonitrile-butadiene-styrene (ABS) plastic for electroless plating. In order to plate ABS plastic in an electroless way, there should be fine holes on the surface of the ABS plastic to enhance mechanically the adhesion strength between the plastic surface and the plate. To make these holes, the surface was coated uniformly with dispersed chemical foaming agents in a mixture of environmentally friendly dispersant and solvent by the methods of dipping or direct application. The solvent seeps into just below the surface and distributes the chemical foaming agents uniformly beneath the surface. After drying off the surface, the surface was heated at a temperature well below the glass transition temperature of ABS plastic. By pyrolysis, the chemical foaming agents made fine holes on the surface. In order to discover optimum conditions for the formation of fine holes, the mixing ratio of the solvent, the dispersant and the chemical foaming agent were controlled. After the etching process, the surface was plated with nickel. We tested the adhesion strength between the ABS plastic and nickel plate by the cross-cutting method. The surface morphologies of the ABS plastic before and after the etching process were observed by means of a scanning electron microscope.

신 기술에 의한 페라이트 막의 저온 제작과 그 응용에 관한 연구 (A Study on the Low Temperature Preparation and the Practical Application of Ferrite Films by New Techniques.)

  • 최동진
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.658-663
    • /
    • 1998
  • Ferrite plating enables were grown by ferrite by plating method in solution at low temperature(<10$0^{\circ}C$). This faciltates the fabrication of new ferrite thin film devices using non- heat-resistant materials(plastic, GaAs ect) as substrates. Combining the ferrite plating with sonochemistry, application of power ultrasonic waves to stimulate chemical reactions, the crystallinity and qualities of films were improved. Modifying the reactions cell and plating conditions further improved the film quality.

  • PDF

무전해도금(I) (Review on Electroless Plating(I))

  • 김만;권식철
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.121-127
    • /
    • 1986
  • There are many plating methods already commercially employed in te surface technology. One of the plating methods is electroless (chemical) plating, which is deposited by auto-catalytic reduction of metallic ion with the reducing agent in the plating bath. And it has many advantages comparing with electrolytic plating in respect of properties of deposit, such as corrosion resistance, wear resistance, uniformity, hardness, adhesion and so on. So, electroless plating is the fatest growing process in metallization of plastic and electronic industry. The properties and numerous applications of electroless deposits are attracting more and more attention from finish specifies. Many metal finishers are considering set-up of new electroless line in their shops. This review will be beneficial to domestic metal finishers to understand the real status of present electroless plating technology. It will also provide some knowledge on the economic aspect of electroless plating for the commercial application of specific parts.

  • PDF

선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구 (A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads)

  • 백점기;정장영;백영민
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.77-93
    • /
    • 1999
  • 본 연구에서는 충격횡압력을 받는 선체 판부재의 붕괴강도 특성을 분석하고 충격하중 효과를 고려한 간이 구조설계식을 제시하고자 한다. 충격횡압력하에 판부재의 붕괴거동을 분석하기 위해 기존의 실험결과와 더불어 범용 비선형 유한요소해석 프로그램인 STARDYNE을 이용하였다. 이론적 방법으로는 먼저 강소성이론을 이용하여 정적 횡압력을 받는 판부재에 대한 붕괴강도식을 도출하였다. 또한, 변형률속도 효과를 고려하여 충격 횡압력 문제에도 적용하였다. 실제 판부재에 적용 예로써 충격횡압력을 받는 강판부재와 알루미늄합금 보강판부재에 대한 붕괴거동을 분석하였다.

  • PDF

횡하중(橫荷重)을 받는 선각판(船殼板)의 비선형(非線形) 해석(解析) (Nonlinear Analysis of Ship Plating under Lateral Loads.)

  • 임상전;양영순
    • 대한조선학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 1980
  • The nonlinear analysis of ship plating with flat bar stiffners has been carried out by the finite element method based on the load incremental approach. The large deflection analysis has been done by using the Lagrangian description. The elastoplastic analysis has been performed by adopting the flow theory of plasticity and the von Mises yield condition. The layered elements are used to show the process of yielding through the plate thickness in the elasto-plastic analysis. The following results are obtained; 1) According to the large deflection analysis, it is shown that the small deflection theory to the plate is applicable in the range of the lateral deflection-the thickness ratio $w/h{\leqq}0.3$ and ship plating in the range of $w/h{\leqq}0.5$. 2) By means of the elasto-plastic analysis, it is found that the maximum load-carrying capacity of the plate increases as much as 1.8 times of the initial yield load in the case of the simply supported condition and 2.2 times in the clamped condition. It is also shown that the maximum load-carrying capacity of ship plating increase as much as 4.3 times in the simply supported condition and 4.2 times in the clamped condition. This method would be applied and extended to solve combined nonlinear problems which involve both material nonlinearity and geometric nonlinearity.

  • PDF

상하악 동시 악교정수술에서 흡수성 고정판을 이용한 골편고정시 술후 안정성에 대한 연구 (POSTOPERATIVE STABILITY OF FIXATION WITH ABSORBABLES IN SIMULTANEOUS MAXILLOMANDIBULAR ORTHOGNATHIC SURGERY)

  • 박정민;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권2호
    • /
    • pp.126-131
    • /
    • 2010
  • Objectives: This study is aimed to determine any differences in the postoperative stability between absorbable and titanium plate systems for fixation in orthognathic surgery with simultaneous maxillomandibular procedures especially including maxillary posterior impaction and advancement. Study Design: Forty patients with dentofacial deformities were randomly assigned into titanium (4 males and 6 females) and absorbable (17 males and 13 females) fixation group. All patients had undergone surgical alterations of maxilla with posterior impaction and advancement. A comparison study of the change in the maxillary position after the simultaneous surgery was performed with 1-day, 6-months postoperative lateral cephalograms compared to preoperative lateral cephalogram by tracing. Wilcoxon rank sum test was used for statistical analysis. Result: The position of the maxilla was stable after surgery and was not changed significantly from 1 day to 6 month after the simultaneous maxillomandibular surgery both in the experimental (absorbable plates) and control (titanium plates). Conclusion: This study suggests that application of absorable plating system in the fixation of maxillary segment in the simultaneous maxillomandibular procedures, leads to a predictable short-term postoperative skeletal stability comparable to the titanium plating system. Long term follow-up and further studies will be needed.

무전해 니켈/금도금에서의 내부 금속층의 결함에 대한 연구 (A Study of the fracture of intermetallic layer in electroless Ni/Au plating)

  • 박수길;정승준;김재용;엄명헌;엄재석;전세호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.708-711
    • /
    • 1999
  • The Cu/Ni/Au lamellar structure is extensively used as an under bump metallization on silicon file, and on printed circuit board(PCB) pads. Ni is plated Cu by either electroless Ni plating, or electrolytic Ni plating. Unlike the electrolytic Ni plating, the electroless Ni plating does not deposit pure Ni, but a mixture of Ni and phosphorous, because hypophosphite Is used in the chemical reaction for reducing Ni ions. The fracture crack extended at the interface between solder balls of plastic ball grid (PBGA) package and conducting pads of PCB. The fracture is duets to segregation at the interface between Ni$_3$Sn$_4$intermetallic and Ni-P layer. The XPS diffraction results of Cu/Ni/Au results of CU/Ni/AU finishs showed that the Ni was amorphous with supersaturated P. The XPS and EDXA results of the fracture surface indicated that both of the fracture occurred on the transition lesion where Sn, P and Ni concentrations changed.

  • PDF

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.