• Title/Summary/Keyword: Plastic filling material

Search Result 42, Processing Time 0.026 seconds

Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging (축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법)

  • 정낙면;이낙규;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1468-1484
    • /
    • 1992
  • In the present paper forward projection is proposed as a new approach to determine the preform shape in rib-web type forging. In the forward projection technique an optimal billet is determined by applying some mathematical relationship between geometrical trials in the initial billet shape and the final products. In forward projection a volume difference between the desired product shape and the final computed shape obtained by the rigid-plastic finite element method is used as a measure of incomplete filling of working material in the die. At first linear inter-/extrapolation is employed to find a proper trial shape for the initial billet and the method is successfully applied to some cases of different aspect ratios of the initial billet. However, when the initial guesses are not sufficiently near the optimal value linear inter-/extrapolation does not render complete die filling. For more general application, a fuzzy system is used in the forward projection technique in order to determine the initial billet shape for rib-web type forging. It has been thus shown that the fuzzy system is more reliable for the preform design in the rib-web type forging process.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Injection Molding for a Ultra Thin-Wall Part using Induction Heating (고주파 유도가열을 사용한 초박육 플라스틱 제품의 사출성형)

  • Park, Keun;Choi, Sun;Lee, Se-Jik;Kim, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation of induction heating in order to rapidly raise the mold temperature. It is observed that the mold surface temperature is raised up to $200^{\circ}C$ in 2 seconds. This induction heating is applied to injection molding of a flexspline for a plastic harmonic drive, which has difficulty in cavity filling because its minimum thickness is only 0.35 mm. The induction heating is then successfully implemented on this ultra-thin wall molding by raising the mold surface temperature around the glass-transition temperature of the molding material.

Injection Molding of Hydrophobic Plastic Plates (사출 성형에 의한 소수성 플라스틱 기판 제작)

  • Yoo, Y.E.;Lee, K.H.;Yoon, J.S.;Choi, D.S.;Kim, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

A Case Study about Problem EPS Plastic Displacement on High Embankment (고성토 지반의 EPS 소성변형 문제점에 대한 사례연구)

  • Shin, Chang Gun;Seo, Jeong You;Lee, Jong keyn;Chae, Min Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.5-12
    • /
    • 2011
  • Numerous studies on the improvement of low strength for soft ground have been performed. EPS, light weight filling material, is used at the study site for stability on consolidation settlement. However, several problems such as settlement of pavement layer and damage of curb occurs. The elevation is lower 1 m than that of designed value by consolidation. It is caused by excessive load during construction. In this study, problems due to overloading on the soft ground where the EPS is used were analyzed and some cases for reasonable improvement method were described. From the results, instructions for design and construction are suggested.

The Fluidity of the Recycled Thermoplastic Elastomer on the Injection Molding Process (사출성형공정에서 엘라스토머 재생재의 유동성)

  • No, B.S.;Han, S.R.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.271-275
    • /
    • 2007
  • These days, recycling of plastic material has become a major issue due to the landfills and environmental problem. This study investigates the fluidity of thermoplastic vulcanizate(TPV), which can be used for an automobile part such as a weather strip, in order to replace ethylene propylene rubber(EPDM). Injection molding experiments with the spiral flow test mold and panel cover mold are conducted to examine the fluidity of TPV during injection molding. It is found out that the recycled TPV's flow length is a little bit longer than the virgin TPV. However, the filling weight for a panel cover parts by a recycled TPV is almost the same as that by a virgin TPV.

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

A Study on the Sedimentation of Dredged Soils and Shape Changes of a Transparent Vinyl Tube by Filling Tests - Anti-Crater Formation - (준설토 주입방법에 의한 비닐튜브체의 퇴적 및 변형 특성 - 크레이터 방지 기술을 중심으로 -)

  • Kim, Hyeong-Joo;Sung, Hyun-Jong;Lee, Kwang-Hyung;Lee, Jang-Baek
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, two different types of dredged fill injection methods are introduced and filling experiments were conducted to analyze the impact of each technique to the distribution and deposition of dredged soil fill and how it influence the final tube shape. Two transparent plastic tubes were fabricated to observe the deposition behavior of the deposited fill material. Both tubes measured 4.0 meters in length (L) and has vinyl tube diameters (D) of 0.5m and 0.7m. T-type and I-type inlet system are also introduced in this paper. The influence of this inlet systems to the distribution and deposition behavior of dredged soil fill inside the vinyl tubes were observed during the experiment. After the sedimentation of the slurry mixture, the water on top of the soil sediments are removed and the slurry mixture was re-injected into the vinyl tube, this process was carried out repeatedly. The shape changes of the vinyl tube, e.g. the changes in both tube height and width, are constantly monitored after each slurry injection and water draining phases. Crater formation was observed in the case of I-Type inlet system and a non-uniform sediment distribution occurred. For the diffusion deposit of soil particles to long distance are minimal shape technique using the T-Type inlet system. Therefore the undrain filling height ratio ($H/D_0$) was found to be around 0.54 to 0.64 and the horizontal strain ratio ($W/D_0$) ranges from 1.45 to 1.54. The filling soil height is proportional to dredged-material filling phases, but, horizontal strain ratio is constant or inversely reduced so that the center of tube body is raised in the upward direction.

BUCCAL FAT PAD TRANSFER AS A PEDICLED FLAP FOR FACIAL AUGMENTATION (외상성 안면 함몰부에 협지방대 유경 피판을 사용한 재건술)

  • Chung, Sang-Chul;Ann, Heui-Yong;Choi, Hong-Sik;Um, In-Woong;Kim, Chang-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.2
    • /
    • pp.153-159
    • /
    • 1991
  • The use of the autogenous free fat is a well-known procedure to fill in superficial depressions resulting from the traumatic or congenital defects. The major donor site for this procedure was the abdominal subcutaneous fat or buttocks. In 1977, Egyedi was the first to report the use of the buccal fat pad as a pedicled graft. The buccal fat pad is a structure usually considered to be a nuisance when encountered in intraoral procedures such as facial bone osteotomies, elevation of buccal falp, or procedures on Stensen's duct. In these operations, appearance of the buccal fat pad complicates surgical exposure. The buccal fat pad is a lobulated convex mass of fatty tissue covered by a very delicate membrane, and is described as having a body from which four processes extend. These projection serve as a filling material between the various muscular structures in the area. Recently malar depression was augmented with the pedicled buccal fat pad in 3 cases, and it was used for the reconstruction of the nasolabial fold in one case.

  • PDF

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.