• Title/Summary/Keyword: Plastic displacement

Search Result 794, Processing Time 0.027 seconds

The clinical usefulness of closed reduction of nasal bone using only a periosteal elevator with a rubber band

  • Park, Young Ji;Ryu, Woo Sang;Kwon, Gyu Hyeon;Lee, Kyung Suk
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.5
    • /
    • pp.284-288
    • /
    • 2019
  • Background: Closed reduction of nasal fracture with various instrument is performed to treat nasal fracture. Depending on the type of nasal fracture and the situation in which it is being operated, the surgeon will determine the surgical tool. The objective of this study was to investigate whether a periosteal elevator (PE) was a proper device to perform closed reduction for patients with simple nasal fractures. Methods: From March 2018 to December 2018, 50 cases of simple nasal bone fracture underwent closed reduction performed by a single surgeon. These patients were divided into two groups randomly: nasal bone reduction was performed using only PE (freer) and nasal bone reduction was performed using Walsham, Asch forcep, and Boies elevator (non-freer, non-PE). Results: The paranasal sinus computed tomography was performed on patients before and after operation to carry out an accurate measurement of reduction distance at the same level. According to the results, the interaction between instruments and fracture types had a significant influence on reduction distance (p = 0.021). To be specific, reduction distance was significantly (p= 0.004) increased by 2.157 mm when PE was used to treat patients with partial displacement compared to that when non-PEs were used. Conclusion: Closed reduction using PE and other elevator is generally an effective treatment for nasal fracture. In partial-displacement type of simple nasal fracture, closed reduction using PE can have considerable success in comparison with using classic instruments.

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.

A Behaviour of Clayey Foundation Using Elasto-plastic Constitutive Model -With an Emphasis on the Numerical Analysis of 2-dimensional Model Foundation- (탄.소성구성식에 의한 점토지반의 거동해석(II) -2차원 모형지반의 수치해석을 중심으로-)

  • 이윤수;이광동;오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.83-94
    • /
    • 1994
  • The first part of this study dealt with the determination of soil parameters for Lade's double work-hardening model using the raw data obtained from cubical and cylinderal triaxial tests At present, it should be investigated which test can simulated satisfactorily the behavior of soft clayey foundation. In this regard, plate bearing test on the 2-dimentional model foundation(218cm long, 40cm wide, 19&m high) was performed, and finite element analysis carried out to abtain the behavior of the foundation. Settlement, lateral displacement, displacement vector and mode of failure were measured and these values were compared with numerical values in order to validate the numerical program developed by authors. The FEM technique was based on Christain-Boehmer's method, in which the displacement is obtained at each nodal point while stress and pore water pressure at each element.In this research, Biot's equation, which explains was elahorately the phisical meaning of consolidation, was selected, as a governing equation, coupled with Lade's double surface work-hardening constitutive model.

  • PDF

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

Study of Shearography Imaging for Quantity Evaluation Defects in Woven CFRP Composite Materials (직조 CFRP 복합재료 내부결함의 정량적 평가를 위한 Shearography 영상처리 기법 연구)

  • 최상우;이준현;이정호;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively. In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Crack Opening Displacement Analysis of Complex Cracked Pipes based on Enhanced Reference Stress Method (개선된 참조응력법을 이용한 복합균열이 존재하는 배관의 균열개구변위 계산)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.80-86
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement (COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

  • PDF

Methods to Evaluate Stress Triaxiality from the Side Necking Near the Crack Tip (균열선단 부근의 측면함몰로부터 응력삼축성의 결정 방법)

  • Kim, Dong-Hak;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1021-1028
    • /
    • 2004
  • Kim et al. suggested an experimental method to determine the Q parameter in situ from the out-of-plane displacement and the in-plane strains on the surface of side necking near the crack tip. In this paper, the procedure to evaluate the stress triaxiality near a crack tip such as the Q parameter is to be polished in the details for simplicity and accuracy. That is, Q and hydrostatic stress are determined only from the out-of-plane displacement, but not using in-plane strain, which is hard to measure. And also, the plastic modulus is determined by an alternative way. Through three-dimensional finite element analyses for a standard CT specimen with 20% side-grooves, the validities of the new procedures are examined in comparison to the old ones. The effect of location where the displacements are measured to determine the stress triaxiality is explored.

Application of Shearography for Nondestructive Evaluation of Internal Defects in CFRP (CFRP에 내재된 결함의 비파괴 평가를 위한 Shearography기법 적용)

  • 최상우;이준현
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.245-251
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF