• Title/Summary/Keyword: Plastic damage

Search Result 815, Processing Time 0.026 seconds

Seismic response of substandard RC frame buildings in consideration of staircases

  • Karaaslan, Ayberk;Avsar, Ozgur
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.283-295
    • /
    • 2019
  • During the seismic performance assessment of existing buildings, staircases are generally not taken into account as structural members but as dead load. Staircases, as secondary structural members, not only serve for connecting successive floors but also provide considerable amount of strength and stiffness to the building which can modify its seismic behaviour considerably. In this parametric study, the influence of staircases on the seismic response of substandard RC frame buildings which differ in number of storey and span, presence of staircase and its position has been examined. Modal Analyses and bi-directional Non-Linear Time History Analyses (NLTHA) were conducted to compare several engineering demand parameters (EDPs) such as inter-storey drift ratio (ISDR), floor accelerations, modal properties, member shear forces and plastic hinge distribution. Additionally, short column effect, variation in shear forces of columns that are attached to the staircase slab, failure and deformation in staircase models have also been investigated. As the staircase was considered in the analytical model, a different damage pattern can be developed especially in the structural components close to staircase.

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain

  • Kim, Yoo Rim;Kim, Sang Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.69-75
    • /
    • 2022
  • Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Polymorphism in the DNA Repair Gene XRCC1 Associated with Squamous Cell Carcinoma and Basal Cell Carcinoma of the Skin in Koreans (한국인의 피부 기저세포암종과 편평세포암종의 XRCC1 유전자 다형)

  • Kang, Sang Yoon;Lee, Goang Gil;Shim, Jeong Yun;Chung, Yoon Gyu;Kim, Nam Keun;Min, Wan Kee
    • Archives of Plastic Surgery
    • /
    • v.33 no.4
    • /
    • pp.433-439
    • /
    • 2006
  • Purpose: DNA in most cell is regularly damaged by endogenous and exogenous mutagens. Unrepaired damage resulted in apoptosis or may lead to unregulated cell growth and cancer. Inheritance of genetic variants at one or more loci results in an reduced DNA repair capacity. These polymorphisms are highly prevalent in the population, and therefore the attributable risks for cancer could be high. Several studies have documented that polymorphisms of XRCC1, XPD and XRCC3 are associated with skin cancer, especially, XRCC1 among of them has been reported frequently. So, this study involves the relationship between mutation of XRCC1 of squamous cell and basal cell cancer of the skin and risk of cancer development in Korean population. Methods: In case control study, study population (n=100, each cancer) is patients who were pathologically diagnosed as skin cancer(squamous cell carcinoma and basal cell carcinoma) in Yonsei Wonju Christian Hospital and Bundang CHA General Hospital between 1998 and 2004. The samples of DNA from whom no history of premalignant skin lesion and other malignant diseases were reported belonged to the control group(n=210). Blood and tissue samples were analyzed for presence of XRCC1 Arg399Glu, Arg280His, Arg194Trp using PCR/ RFLP method. Results: For Korean, there was a significant correlation between XRCC1 Arg399Gln gene mutation and risk of basal cell carcinoma development(Arg 399Gln(GA), p=0.012, OR=2.016, 95% CI; 1.230-3.305) /Arg399Gln (AA), p=0.011, OR=1.864, 95% CI; 1.149-3.026)). And, there was also significant correlation between XRCC1 Arg194Trp and risk of skin squamous cell carcinoma development (Arg194Trp (CT+TT), p=0.041, OR=0.537, 95% CI; 0.301-0.960)). In contrast, there was no significant correlation between XRCC1 Arg280His and risk of either basal cell carcinoma or squamous cell carcinoma development. Conclusions: Our result present that XRCC1 Arg399 Gln in basal cell carcinoma and XRCC1 Arg194Trp in squamous cell carcinoma have possibility of cancer risk and biomarker in Korean population. But XRCC1 Arg280 His known having cancer risk on other studies is not associated with cancer risk to squamous cell carcinoma and basal cell carcinoma in Korean population.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

Prophylactic Intraoperative Nasolacrimal Duct Intubation in Surgical Treatment of Facial Fractures-Is There a Role?

  • Teoh, Ryan Liang Wei;Fong, Pei Yuan;Cai, Elijah Zhengyang;Yap, Yan Lin;Hing, Eileen Chor Hoong;Lee, Han Jing;Nallathamby, Vigneswaran;Ong, Wei Chen;Lim, Jane;Sundar, Gangadhara;Lim, Thiam Chye
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.195-199
    • /
    • 2022
  • Nasolacrimal duct (NLD) damage is associated in the majority of type II and III naso-orbito-ethmoid (NOE) fractures. Our study aims to investigate the efficacy and safety of prophylactic NLD intubation in the setting of facial fractures, by comparing incidence of postoperative epiphora and wound infection. A retrospective matched control study was conducted on all patients with surgically treated facial fractures from 2008 to 2013 (n=280) (IRB ref number: DSRB 2013/01198). Patients with the following fracture types were included: NOE (n=16), frontal sinus (n=2), Le Fort II/III (n=8), and > 1 type (n=48). All patients in this study were included with the intention to treat. The study group comprised patients who were intubated, while the control group patients were not intubated. Each group had 37 patients matched for age, gender, fracture type, and injury type. A single oculoplastic surgeon skilled in lacrimal surgery performed the procedure for all intubated patients. Patients with more severe and complex facial fractures were intubated with bicanalicular Crawford stents. Postoperative epiphora and infective complications (both facial wound and dacryocystitis) were assessed at 1, 3, 6, and 12 months. There was no significant difference in incidence of either postoperative epiphora (p=0.152) or wound infection (p=0.556) comparing both groups. Reduced incidence of postoperative epiphora in the study group is statistically not significant and does not support the need for prophylactic intubation. If radiographic evidence of NLD disruption or regurgitation seen on syringing on the NLD intraoperatively is present, intubation is safe and efficacious only if performed by an expert.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF