• Title/Summary/Keyword: Plastic crystal

Search Result 187, Processing Time 0.027 seconds

TEM Microstructure of Al2O3/Ni Nanocomposites by Electroless Deposition (무전해코팅법으로 제조한 Al2O3/Ni 나노 Composite의 TEM 미세조직)

  • 한재길;이재영;김택수;이병택
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Ni coated $Al_2O_3$ composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the $Al_2O_3$ matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between $Al_2O_3$ and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered $Al_2O_3$ monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between $Al_2O_3$ and Ni phase, and no observed microcracks at their $Al_2O_3$ and Ni interface. In the $Al_2O_3$/Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the $Al_2O_3$/Ni composite.

Cross-linkable Polymer Matrix for Enhanced Thermal Stability of Succinonitrile-based Polymer Electrolyte in Lithium Rechargeable Batteries

  • Ryou, Myung-Hyun;Lee, Dong-Jin;Lee, Je-Nam;Lee, Hong-Kyeong;Seo, Myung-Won;Lee, Hye-Won;Shin, Weon-Ho;Lee, Yong-Min;Choi, Jang-Wook;Park, Jung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • A polymer electrolyte was prepared by using polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) or poly(ethylene glycol) dimethacrylate (PEGDMA) as polymer matrices, succinonitrile as an additive, and lithium perchlorate as a lithium salt. Compared to the polymer electrolyte employing PVdF-HFP, the PEGDMA-based polymer electrolyte exhibits substantially superior thermal stability when exposed to high temperatures. Nonetheless, the ionic conductivity of the PEGDMA-based polymer electrolyte was preserved in a wide temperature range between $-20^{\circ}C$ and $80^{\circ}C$.

Study on the Water Vapor Permeation Properties of the Inorganic Thin Composite Film for the Passivation Layer in the OLED (유기 EL 보호층으로 적용하기 위한 무기 복합 박막의 투습율 특성 연구)

  • 김광호;이주원;김영철;주병권;김재경
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.432-438
    • /
    • 2004
  • In this study, we investigated the WVTRs Properties of inorganic thin composite films(ITCFs) to be newly adopted as the passivation layer of the OLED to replace the inorganic compound material Because we thought that inorganic compound materials were limited to enhance the barrier property of thin film. So, ITCFs were fabricated by mixing the cooperated material with the base material. And then, ITCFs were deposited onto the plastic substrate using the electron beam evaporation system and the water vapor transmission rates(WVTRs) were measured using the Mocon equipment. As a result of the WVTR measurement, we could analyze the WVTR values for various ITCFs. ITCFs had a remarkably lower value than the inorganic compound film. Through the analysis of thin film, we can understand the crystal structure and mixed amount. Therefore, ITCFs can be used as the inorganic passivation layers of OLED with the inorganic compound film.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube (용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성)

  • Park, Il-Cho;Han, Min-Su
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Experimental Studies on the Compressive Strength of the Frozen Soils (동결토의 압축강도에 관한 실험적 연구)

  • 유능환;최중돈;유영선;조영택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

The Crystallographic and Magnetic Properties of $Fe_{0.8}Co_{0.18}(BN_{0.02}$ Synthesized by Heat Treatment and Plastic Deformation ($Fe_{0.8}Co_{0.18}(BN_{0.02}$의 열처리 및 소성변형에 의한 결정구조와 자기적 성질)

  • 김정기;한경훈;이상문;정재윤;김예니;신경호
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.225-231
    • /
    • 2000
  • The crystallographic and magnetic properties of the sample F $e_{0.8}$ $Co_{0.18}$(BN)$_{0.02}$ synthesized by microwave arc-melting with the maximum power of 3.5 kW have been studied by the methods of an X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in a form of pellet pressed under the pressure of 9,000 N/c $m^2$, rolled coldly, and treated with the different temperatures. The X-ray diffraction pattern of pelleted sample shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The X-ray diffraction pattern shows that a residual stress, which exists in the sample, is eliminated by final 90$0^{\circ}C$ annealing. As rolling rate and heat treatment temperature increases, the saturation magnetization and the remanence of the samples increase whereas the coercivity of the samples shows decrease. Also the saturation magnetization and the remanence of the samples were affected by rolling rate and rolling direction than heat treatment temperature, but the coercivity of the samples was affected by rolling rate and direction as well as heat treatment temperature. This means that a domain wall motion is easy due to elimination of a residual stress and an inclusion which exists in the sample by rolling and heat treatment and a local induced-magnetization easy axis was also formed to parallel to the rolling direction due to creation of the like-atom pairs across the slip plane by rolling......

  • PDF

A Study on the Problem of Organic Image in the 20th Post-paintings (20세기 후기회화에 있어서 유기 이미지의 문제)

  • Park Ji-Sook
    • Journal of Science of Art and Design
    • /
    • v.3
    • /
    • pp.145-177
    • /
    • 2001
  • The artist's interest has been captivated by ecological phenomena in Nature. Her keen captivation has then been focused into plastic art depicting the image of primitive life. The wide sweep of her work encompasses the totality of nature which consists of the human's subconscious power and imagination which she then portrays by organic images. These organic images are in contrast to scientific, mathematical and logical inference and consciousness. This research examines the character of the organic images in modern art by her analysis of some representative works by others. The image is an essential concept in the art which appeared in very different ways and in different perspectives. The image in the artwork appears to be the realistic expression until the early part of the 20th Century. Well into the 20th Century, it began being expressed in various ways such as combined images by imagination which is combined or rejected in the story of artwork. It also began being expressed by transferred images by changed original conditions. It is the main purpose of this research is to study of various expressions of organic images in the artwork of the Post-Modernism era. The character and meaning of organic image painting helps people to approach the human instinct more easily to find out the natural essence. It is also an objective of the organic image to tenderise our human sensibilities, thus helping us to regain vitality and recover our poor humanity in the barren wilderness of modern society. 'Life communion with nature' is a meeting point and common ground for Oriental Philosophy and organic image painting. Through this research, organic image painting is characterised in the four following ways : 1st) Organic image painting seeks regularity and perfection of outer shapes, in contrast to disordered and deformed nature, resulting in organic and biotic formalistic mode of plastic art. 2nd) Organic image painting seeks the formative. 3rd) Organic image painting pursues the priceless dignity of life by researching the formatted arrangement and figure, which contains primitive power of life. 4th) Organic image painting makes crystal clear the power of human and nature, which is a historic and biological phenomenon. This, in turn, exposes the humanistic view of the world from modern society best characterised in lost self-understanding, isolation and materialism. The representative organic image painting artists are Elizabeth Murray, Kusama Yayoi, and Niki do Saint Phalle. Elizabeth Murray used shaped canvas and a round construction of relief works. Kusama Yayoi used Automatistic expressionism originating from the realms of unconsciousness and which is represented by the mass and shape of a water drop. Niki do Saint Phalle shows the transcendence of universal life and anti-life to respect the dignity of life and the eco-friendliness relationship of human and nature in the post-modernism in art history. This is accomplished by surrealistic, symbolic, fantastic and humoristic expression. These three artists' works express the spirit of the organic image in contemporary art. It contains the stream of nature and life to seek not only the state of materialism in the reality, but also the harmonized world of nature and human which has almost lost the important meaning in modern times. Finally, this organic image is the plastic language of the majestic life. It is the romantic idea that the intimacy of nature and the universe and Surrealism, which emphasizes the unconsciousness , is the source of truth and spirit. Also it is influenced by primitive art and abstract art. According to this research, the subject 'Research About Organic Images' is not only an important element in the plastic arts from primitive society to the present, but is also fundamental to an true understanding of Post-Modernism.

  • PDF