• Title/Summary/Keyword: Plastic behavior

Search Result 2,084, Processing Time 0.046 seconds

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

A Study on Fatigue Crack Propagation Behavior with Pure-Ti Plate (순수 티타늄 판재의 피로균열 전파거동에 관한 연구)

  • 오세욱;김태형;김득진;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.92-100
    • /
    • 1995
  • The effect of different anisotropy and stress ratio on fatigue crack propagation behavior was investigated under various stress ratio(R=-0.4, -0.2, 0.2, 0.2, 0.4) using pure titanium sheet used in aerospace, chemical and food industry. The rack closure behavior under constant load amplitude fatigue crack propagation test was examined. Fatigue crack propagation rate da/dN was estimated in terms of effective stress intensity factor range, $\Delta$K$_{eff}$, regardless of various stress ratio but was influenced by anisotropy. Also, it was found that the effect of anisotropy was considerably decreased but still not negligible when he da/dN was evaluated by a conventional parameter, $\Delta$$K_{eff}$/E and when the modified da/dN.$\sqrt{\varepsilon}_f$ was evaluated by $\Delta$$K_{eff}$/E. On the other hand, da/dN could be evaluated uniquely by effective new parameter, $\Delta$K$_{eff}$/$sigma_{ys}$, regardless of anisotropy, as int he following equation da/dN=C''[\frac{{\Delta}K_{eff}}{{\sigma}_{ys}}]^{n''}. And effective stress intensity factor range ratio, U was estimated by the following equation with respect to the ratio of reversed plastic zone size, $\Delta r_{p}$ to monotonic plastic zone size, $r_p$ regardless of stress ratio and anisotropy. U=-4.45$(\Delta r_{p}/r_{p})^{2}$+4.1$(\Delta r_{p}/r_{p})$+0.245_{p})$+0.245

  • PDF

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

Study on Consolidation Behaviors of Soft Ground by Plastic Board Drain Using Model Tests (실내모형실험에 의한 Plastic Board Drain이 적용된 연약지반의 압밀거동에 관한 연구)

  • You, Seung-Kyong;Hong, Won-Pyo;Yoon, Gil-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Accurate prediction of consolidation behaviors of the soft ground improved by plastic board drains is not easy because the consolidation characteristics of the improved ground has not been fully elucidated yet. The shape of drains is one of the most important factors which affect the consolidation characteristics of the improved ground. In this paper, a series of model consolidation tests of soft clay ground improved by plastic board drain were carried out, in order to investigate the effect of both plastic board width and stress level on consolidation characteristics of the improved ground. As the results, behaviors of both settlement and excess pore pressure dissipation were elucidated. Also, the non-uniform distribution of water content in the model ground was obtained. Then, in order to investigate the effect of vertical drainage on the consolidation behavior in the model tests, the comparison between experimental consolidation behaviors and Barron's theoretical ones were carried out. As the results, it was elucidated that the consolidation behavior in the model tests was affected not only by radial drainage but also by vertical drainage.

  • PDF

Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder using HSB High Performance Steel in Positive Bending (HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비)

  • Choi, Dong Ho;Lim, Ji Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.205-217
    • /
    • 2014
  • In this study, flexural strength and ductility requirements of composite hybrid steel I-girder with its HSB(high performance steel for bridge) applied to tension flanges are examined in positive bending. In AASHTO LRFD specification, flexural strength and ductility requirements of composite I-girder in positive bending are specified in terms of plastic moment and plastic neutral axis that are derived from plastic behavior of conventional steel. However, plastic zone cannot be defined clearly from the stress-strain behavior of HSB unlike the behavior of conventional steel. Therefore, through idealized stress-strain curves of HSB, the plastic moment of composite hybrid steel I-girder with its HSB applied to tension flanges is defined by assuming the plastic zone of HSB. By using the consequences of numerical analysis regarding arbitrary cross-sections that have various dimensions, ductility requirements and flexural strength of composite hybrid I-girder with its HSB applied to tension flange are proposed.

Effect of Strength Parameter a in the Generalized Hoek-Brown Failure Criterion and the Reinforcement Thickness on the Elasto-plastic Behavior of Circular Tunnel (일반화된 Hoek-Brown 파괴조건식의 강도정수 a와 터널 보강깊이가 원형터널의 탄소성 거동에 미치는 영향)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • In the design stage of a tunnel, the wall convergence is commonly estimated through an elasto-plastic analysis of the tunnel, which has been a topic drawing many researcher's attention so far. Despite its importance, however, the elasto-plastic behavior of a circular tunnel excavated in a generalized Hoek-Brown rockmass is still poorly understood. In this study, a simple munerical method based on Lee & Pietruszczak (2008) for the elasto-plastic analysis of a circular tunnel surrounded by reinforced annulus is proposed. It is assumed that the tunnel is excavated in a strain-softening rockmass obeying the generalized Hoek-Brown failure condition. The commercial code FLAC is used for the verification of the proposed method. The influence of the Hoek-Brown strength parameter a and the thickness of the reinforcement annulus on the elasto-plastic behavior around the tunnel was discussed by conducting some example analyses. The results show that the influence of these two parameters on the distribution of stresses and displacements is substantial.

Effect of Single Overload on the Fatigue Crack Growth Behavior of Laser Welded Sheet Metal (단일 과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 곽대순;김석환;오택열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2004
  • In this study, we investigated fatigue crack growth behavior of laser welded sheet metal due to a single overload. Fatigue specimens were made using butt joint of cold rolled sheet metal that was welded by $CO_2$ laser. The fatigue crack propagation tests were performed in such a way that fatigue loading was parallel to the weld line while crack propagation was perpendicular to the weld line. Single overload was applied when fatigue crack tip was arrived near the weld line. The distances between the crack tip and the weld line at which a single overload was applied were 6, 4 and 2mm. The effect of specimen thickness and overload ratio on the fatigue behavior was determined. The plastic zone size of crack tip due to the single overload was determined from the finite element analysis. For investigating fatigue crack growth behavior, we used different thickness specimen 0.9mm and 2.0mm, and variable overload ratio applied fatigue crack propagation test. Also we used finite element analysis for investigating the plastic zone size of crack tip when single overload applied

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.