• Title/Summary/Keyword: Plastic adhesion

Search Result 212, Processing Time 0.027 seconds

FIBRIN SEALANTS IN MAXILLOFACIAL SURGERY : A INTRODUCTORY REPORT (악안면 외과 영역에서의 FIBRIN SEALANTS 의 이용)

  • Kim, Myung-Jin;Park, Hyung-Kook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.2
    • /
    • pp.129-136
    • /
    • 1991
  • The fibrin sealant was first designed as an alternative to surgical suture for the purpose of surface-to-surface union especially in parenchymal organs like the liver, spleen and kidney. The clinical application of currently used fibrin sealant was first introduced in 1972. The fibrin sealant consists of principal two components; lyophilized human fibrinogen and bovine thrombin. The fibrinogen component also contains coagulation factor XIII. A solution of aprotinin, an inhibitor of fibrinolysis is used to dissolve the fibrinogen and to provide the first component, and a solution of calcium chloride is also used to provide the second component. From July to December in 1990, during 6 months, we used fibrin sealant in the 28 patients of 33 various cases, in the following ways; supportive application of fibrin sealant after free autogenouse nerve graft for the repair of inferior alveolar nerve, facial nerve or accessory nerve, treament of hemangioma or lymphangioma to thrombosize and lead to the tumor shrinking, skin grafting to stimulate the adhesion and tissue repair, bone grafting in the patients of cleft alveolus, mandibular reconstruction or orthognathic surgery to facilitate the knitting of bone chips, tissue adhesion after tumor resection, radical neck dissection or flap reconstructions, and supportive adhesion of external auditory cannal after TMJ surgery via postauricular approach. No adverse effects were observed, none of the patients developed hepatitis or other blood transmitted disease, and the wound healing were acceptable.

  • PDF

A Study on the Bond Strength of BCB-bonded Wafers (BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.479-486
    • /
    • 2007
  • Four point bending is used to study the dependences of bond strength of benzocyclobutene(BCB) bonded wafers and BCB thickness, the use of an adhesion promoter, and the materials being bonded. The bond strength depends linearly on BCB thickness, due to the thickness-dependent contribution of the plastic dissipation energy of the BCB and thickness independence of BCB yield strength. The bond strength increases by about a factor of two with an adhesion promoter for both $2.6{\mu}m$ and $0.4{\mu}m$ thick BCB, because of the formation of covalent bonds between adhesion promoter and the surface of the bonded materials. The bond strength at the interface between a silicon wafer with deposited oxide and BCB is about a factor of three higher than that at the interface between a glass wafer and BCB. This difference in bond strength is attributed to the difference in Si-O bond density at the interfaces. At the interfaces between plasma enhanced chemical vapor deposited (PECVD) oxide coated silicon wafers and BCB, and between thermally grown oxide on silicon wafers and BCB, 12~13 and $15{\sim}16bonds/nm^2$ need to be broken. This corresponds to the observed bond energies, $G_0s$, of 18 and $22J/m^2$, respectively. Maximum 7~8 Si-O $bonds/nm^2$ are needed to explain the $5J/m^2$ at the interfaces between glass wafers and BCB.

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.

The Expression of CD 18 on Ischemia- Reperfusion Injury of TRAM Flap of Rats (흰쥐의 복직근피부피판에 일으킨 허혈-재관류 손상에서 CD18의 발현)

  • Yoon, Sang Yup;Lee, Taik Jong;Hong, Joon Pio
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.737-741
    • /
    • 2006
  • Purpose: This study was to evaluate the expression pattern of CD 18(leukocyte adhesion glycoprotein) in ischemia-reperfusion injury of TRAM flap of rats. Through this study, we can obtain more information about ischemia-reperfusion injury. We want to develop specific medicine to improve the survival rate of TRAM flap in the future. Methods: A TRAM flap supplied by a single pedicle superior epigastric artery and vein was elevated on 60 Sprauge-Dawley rats. The rats were divide into 6 groups (each group n=10); Group O: sham, no ischemia-reperfusion injury, Group I: 2 hour reperfusion after 4 hour ischemia, Group II: 4 hour reperfusion after 4 hour ischemia, Group III: 8 hour reperfusion after 4 hour ischemia, Group IV: 12 hour reperfusion after 4 hour ischemia, and Group V: 24 hour reperfusion after 4 hour ischemia. This study consisted of gross examination for flap survival and flow cytometry study of CD18 on neutrophils. Results: The gross measurement of the flap showed different survival rate in group I(71%), II(68%), III(37%), IV(34%) and V(34%). All experimental groups showed an increase in the expression of CD18 compared to group O. The expression of CD18 was rapidly increased in ascending order in group I, II and III. But, the expression of CD18 was maintained in group IV and V. Conclusion: The results can be implemented in the study to develop drugs which are capable of reducing ischemia-reperfusion injury in microsurgical breast reconstruction.

The Effect of Erythropoietin on Ischemia-Reperfusion Injury: An Experimental Study in Rat TRAM Flap Model (백서 복직근판의 허혈-재관류 손상에 대한 Erythropoietin의 영향)

  • Kim, Eun Key;Hong, Joon Pio
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.621-626
    • /
    • 2006
  • Purpose: Erythropoietin is traditionally known to regulate erythropoiesis, but recently its protective effect against ischemia-reperfusion injury has been studied mainly in cardiovascular and neuronal systems. This study was planned to investigate the effects of recombinant human erythropoietin on ischemia-reperfusion injury in rat TRAM flap model. Methods: Superiorly based TRAM flap was elevated and ischemic insult was given for four hours. Thirty minutes before reperfusion, single dose recombinant human Erythropoietin(5000IU/kg) was injected via intraperitoneal route in the treatment group. At 24 hours postoperatively, systemic neutrophil count, tissue myeloperoxidase activity, malonyldialdehyde amount, nitric oxide content, tissue water content and histologic finding of inflammation was evaluated. On 10 days postoperatively, flap survival rate, angiogenesis and change in hematocrit level was evaluated. Results: Tissue nitric oxide level was significantly higher and myeloperoxidase activity was significantly lower in the treatment group 24 hours after reperfusion. Tissue water content was significantly lower in the treatment group. Perivascular neutrophil infiltration and intravascular adhesion was marked in the control group. Mean flap survival after ten days was 69% in the treatment group, and 47% in the control group, demonstrating a significant difference. Neovascularization in the treatment group also outnumbered the control group. No significant hematocrit rise was noted ten days after erythropoietin administration. Conclusion: Recombinant human Erythropoietin improved flap survival in ischemia-reperfusion injured rat TRAM flaps, at least partially owing to suppressed inflammation, increased nitric oxide, and enhanced angiogenesis.

Effects of Poly-N-acetyl Glucosamine(pGlcNAc) Patch on Wound Healing in db/db Mouse (Poly-N-acetyl-glucosamine이 당뇨병 쥐에서 창상치료에 미치는 영향)

  • Yang, Ho Jik;Yoon, Chi Sun
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • Purpose: Poly-N-acetyl glucosamine(PGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic and angiogenic agents. The similarity between PGlcNAc patch and the natural extracellular matrix allows it to support new healthy tissue growth in an injured area and to encourage fluid absorption. In this study, we hypothesized that a poly-N-acetyl glucosamine fiber patch(PGlcNAc patch) may enhance wound healing in the db/db mouse. Methods: PGlcNAc patches were applied on one square centimeter, full-thickness, skin wounds in the db/db mouse model. Wounds(n=15 per group) were dressed with a PGlcNAc nanofiber patch for 1 hour(1 h), 24 hours(24 h) or left untreated(NT). After the application time, patches were removed and wounds were allowed to heal spontaneously. The rate of wound closure was evaluated by digital analysis of unclosed wound area in course of time. At day 10, wounds(n=7 per group) were harvested and quantified with immunohistochemical markers of proliferation(Ki-67) and vascularization (platelet endothelial cell adhesion molecule, PECAM-1). Results: Wounds dressed with PGlcNAc patches for 1 hour closed faster than control wounds, reaching 90% closure in 16.6 days, nine days faster than untreated wounds. Granulation tissue showed higher levels of proliferation and vascularization following 1 h treatment than the 24 h and NT groups. In addition to its hemostatic properties, the PGlcNAc material also appears to accelerate wound closure in healing-impaired genetically diabetic mice. Conclusion: This material, with its combination of hemostatic and wound healing properties, has the potential to be effective agent for the treatment of complicated wounds.

Refinements of Adipofascial flap for Small Defects of Fingers and Toes: Indication and Surgical Tips

  • Chung, Yoon-Kyu;Choi, Jin-Hee;Kim, Jiye;Chung, Seum
    • Archives of Reconstructive Microsurgery
    • /
    • v.25 no.2
    • /
    • pp.25-28
    • /
    • 2016
  • Purpose: Reconstruction of small defects of the dorsal fingers and toes is a challenging task. Although adipofascial flap is widely used for these areas, additional refinements are warranted. In this paper, we define the appropriate defect size in the finger and toes that can be treated with the adipofascial flap, refine its surgical indications and present a few surgical tips. Materials and Methods: Twelve patients with dorsal defects of the fingers and toes were treated with a random-type adipofascial turn-over flap and skin graft. If the defect area exceeded the size that could be covered by a conventional design, the flap base was designed in oblique or curvilinear fashion to lengthen the flap. For accurate defect coverage, the width of the flap base was designed in an asymmetrical shape depending on the defect configuration, varying the width from 0.3 to 1.0 cm, as opposed to the standard 0.5 to 1.0 cm width. Moreover, the lateral limit of the flap was defined as the lateral axial line. The size of the defect ranged from $3.0{\times}1.7cm$ to $1.5{\times}1.3cm$. Results: All flaps survived completely. Gliding function of the hand was well preserved and there was no evidence of tendon adhesion. Conclusion: The small defect in the dorsal finger and toe can be defined as less than one phalanx-length, measuring about $3.0{\times}2.0cm$ in size. If the defect exceeds this dimension, it is recommended that a different option be considered. We believe the adipofascial flap is an excellent option for treating small defects.

Prevention of thin film failures for 5.0-inch TFT arrays on plastic substrates

  • Seo, Jong-Hyun;Jeon, Hyung-Il;Nikulin, Ivan;Lee, Woo-Jae;Rho, Soo-Guy;Hong, Wang-Su;Kim, Sang-Il;Hong, Munpyo;Chung, Kyuha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.700-702
    • /
    • 2005
  • A 5.0-inch transmissive type plastic TFT arrays were successfully fabricated on a plastic substrate at the resolution of $400{\times}3{\times}300$ lines (100ppi). All of the TFT processes were carried out below $150^{\circ}C$ on PES plastic films. After thin film deposition using PECVD, thin film failures such as film delamination and cracking often occurred. For successful growth of thin films (about 1um) without their failures, it is necessary to solve the critical problem related to the internal compressive stress (some GPa) leading to delamination at a threshold thickness value of the films. The Griffith's theory explains the failure process by looking at the excess of elastic energy inside the film, which overcomes the cohesive energy between film and substrate. To increase the above mentioned threshold thickness value there are two possibilities: (i) the improvement of the interface adhesion (for example, through surface micro-roughening and/or surface activation), and (ii) the reduction of the internal stress. In this work, reducing a-Si layer film thickness and optimizing a barrier SiNx layer have produced stable CVD films at 150oC, over PES substrates

  • PDF

Bragg Reflecting Waveguide Device Fabricated on a Flexible Substrate using a Nano-imprinting Technology (나노임프린팅 기술을 이용한 유연성 브래그 반사 광도파로 소자)

  • Kim, Kyung-Jo;Yi, Jeong-Ah;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Bragg reflecting waveguide devices have been fabricated on a flexible polymer substrate utilizing a post lift-off process which could Provide excellent uniformity of grating Patterns on Plastic film. The 510 m Period Bragg grating pattern is made by two methods. In the first sample the grating is fabricated by exposing the laser interference pattern on a photoresist, and then it is inscribed by $O_2$ plasma etching. The grating pattern of the second sample is formed by a PDMS soft mold imprinting process. The selective adhesion property of SU-8 material for Au and Si surfaces is utilized to prepare a 100-mm thick plastic substrate. Single mode waveguide is fabricated on the plastic substrate using polymer materials with refractive indices of 1.540 and 1.430 for the core and the cladding layers, respectively. The Bragg grating on Plastic substrate does not show any degradation in its spectral response compared to the reference sample made on a silicon wafer.

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.