• 제목/요약/키워드: Plastic Material

검색결과 2,707건 처리시간 0.038초

유방촬영장치의 압박대 재질을 고려한 투과선량 평가 (Evaluation of Radiolucent Considering the Compression Paddle Materials in Mammography)

  • 홍동희
    • 한국콘텐츠학회논문지
    • /
    • 제15권11호
    • /
    • pp.307-312
    • /
    • 2015
  • 유방촬영은 날로 증가추세에 있으며 압박을 통해 영상을 얻는 것이 화질을 향상시키고 피폭선량을 줄이는데 필수적이다. 그러나 압박대 자체의 두께로 인해 산란선과 피폭선량을 증가시킬 수 있으므로 압박대 재질에 대한 고찰이 필요하다. 현재 임상에서 쓰이고 있는 재질은 폴리카보네이트이며 플라스틱 계열이다. 환자의 피폭선량을 줄이기 위해 노력한다면 이보다 더 좋은 재질에 대해 고려해볼 필요가 있기에 본 연구에서는 플라스틱 계열 물질 중 비결정성 플라스틱에 대한 방사선투과성에 대해 비교해 보았다. 결과 방사선투과성 및 반가층, 투과 선량의 Pixel값이 HIPS, GPPS, ABS, Tritan, PC, PMMA 순으로 높은 결과를 보였다.

슬리브드 폴리머 발사체의 충격시 벌징 거동 패턴에 미치는 코어 재료의 영향 (Influences of Core Materials during Impact The Bulging Behavior of Sleeved Polymer Projectiles)

  • 신형섭;박성택;정윤철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.198-203
    • /
    • 2008
  • In the present study, the deformation behavior of both of metal and polymer combination on impact was investigated. They have showed a different deformation behavior when the co-axially combined projectile was impacted on rigid target. The theory according to Taylor's simplified approach assumes an ideally rigid-plastic material model exhibiting rate-independent behavior and simple one-dimensional wave propagation concepts that neglect radial inertia. In the case of impact with polymeric materials, elastic strain in general are not negligible compared with plastic strain; and the rigid-plastic material behavior assumed by Taylor for metallic materials cannot be applied any more. Since, the sleeve and the core materials have widely different mechanical properties, they will produce a significant difference of mechanical impedance with each other. Therefore these impedance mismatch influences on the deformation behavior sleeved polymer projectile on impact. As a result, sleeved projectiles will generate a very interesting impact behavior. Therefore, the according to sleeved metal material and core polymer material can see expected. The objective of this study was to investigate the factors which influences on deformation behavior pattern of sleeve materials surface.

  • PDF

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

열전도성 플라스틱을 이용한 21 W급 LED Light Engine의 방열설계 (Thermal Design of 21 W LED Light Engine Using Thermal Conductive Plastic)

  • 최원호;최두호;이진열;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.208-212
    • /
    • 2015
  • This study will design the structural optimization of 21 W LED heat sink using the thermal conductive plastic materials. The thermal conductive plastic heat sink is inferior to aluminum heat sinks in thermal properties. This study will solve this problem using formability of thermal conductive plastic heat sink. A heat sink was optimized in terms of the number, and the thickness of fins and the base thickness of the heat sink, using the Heatsinkdesigner software. Also by using SolidWorks Flow simulation and thermal analysis software, the thermal characteristics of the heat sink were analyzed. As the result, the optimized heat sink has 17 fins, which are 1.5 mm thick and a 3.7 mm-thick base. The highest and the lowest temperature were $51.65^{\circ}C$ and $46.24^{\circ}C$ respectively. Based on these results, The thermal conductive plastic heat sink is considered possible to overcome heating problem when designing in complex structure.

소성 이방성이 박판의 주름 발생에 미치는 영향 (The effect of plastic anisotropy on wrinkling behavior of sheet metal)

  • 양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.14-17
    • /
    • 1999
  • The wrinkling behavior of a thin sheet with perfect geometry is a kind of compressive instability. The compressive instability is influenced by many factors such as stress state mechanical properties of the sheet material geometry of the body contact conditions and plastic anisotropy. The analysis of compressive instability in plastically deforming body is difficult considering all the factors because the effects of the factors are very complex and the instability behavior may show wide variation for small deviation of the factors. In this study the bifurcation theory is introduced for the finite element analysis of puckering initiation and growth of a thin sheet with perfect geometry. All the above mentioned analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme proposed by Riks. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. in order to investigate the effect of plastic anisotropy on the compressive instability a square plate that is subjected to compression in one direction and tension in the other direction is analyzed by the above-mentionedfinite element analysis. The critical stress ratios above which the buckling does not take place are found for various plastic anisotropic modeling method and discussed. Finally the effect of plastic anisotropy on the puckering behavior in the spherical cup deep drawing process is investigated.

  • PDF

소성 대변형 및 이방성 손상의 유한요소해석 (Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage)

  • 노인식;임상전
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.145-156
    • /
    • 1993
  • 대변형, 대회전, 대변형도 문제를 고려한 탄소성-손상 유한요소 정식화 과정을 연구함으로써 구조물의 모든 비선형 거동 및 손상을 합리적으로 예측할 수 있는 수치모형을 개발하였다. 재료의 소성 변형과정에서 발생되는 손상을 합리적으로 고려하기 위하여 연속체 손상역학의 접근방법을 이용하여 구성방정식을 정식화하였으며 Updated Lagrangian 정식화방법, 호장증분법 등의 비선형 강성방정식 해법을 적용하여 2차원 평면문제를 대상으로 하는 탄소성-손상 유한요소해석 프로그램을 구성하였다. 여러가지 예제 계산을 통하여 이 수치모형의 적용성 및 타당성을 검토한 결과 대변형 문제, 손상을 포함하는 재료 비선형문제 공히 합리적인 해석결과를 제시하고 있슴을 확인할 수 있었다.

  • PDF

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

자궁난관 조영술 검사 시 Speculum 재질에 따른 흡수선량의 변화에 관한 연구 (Research about the absorbed dose with speculum material-related in Hysterosalpingography)

  • 김연민
    • 대한디지털의료영상학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of our study was to determine the entrance surface dose and absorbed dose in ovary when using the metal speculum and plastic speculum in hysterosalpingography respectively. The examinations was performed in anthropomorphic phantom into which calibrated photoluminescence glass dosimeter were placed on symphysis pubis level surface and ovary area. We checked average fluoroscopy time and spot expose times during the hysterosalpingography. It was average fluoroscopy time 58 sec, spot expose 5 times. We divided the subjects into two different groups to used metal and plastic speculum. We measured 10 times of absorbed dose in the same condition of the anthropomorphic phantom. We compared two groups adsorbed dose on ovary with speculum material-related. The entrance surface dose on of plastic Speculum using group was average 17.23 mGy, absorbed dose on ovary was average 3.51 mGy. The entrance surface dose on ovary of metal Speculum using group was average 19.95 mGy, absorbed dose on ovary was average 4.14 mGy. Plastic speculum using group shows a decrease absorbed dose(17.9%) as compared with metal speculum using group. The method of plastic speculum using in hysterosalpingography. might provide us with lower radiation dose, especially in patients with childbearing stage.

  • PDF

자가연골이식을 이용한 안장코의 교정 (Correction of Saddle Nose Deformity using Autogenous Cartilage Graft)

  • 천지선;김규보;양정열;신명석;이승찬
    • Archives of Plastic Surgery
    • /
    • 제34권1호
    • /
    • pp.81-87
    • /
    • 2007
  • Purpose: Correction of saddle nose remains problematic both in the technique of reconstruction and in the choice of implant material for nasal augmentation. A large variety of graft materials have been used for the reconstruction of the saddle nose deformity. The purpose of this study is to determinate an algorithm for deciding alternative graft materials used in correction of saddle nose deformity. Methods: Six patients with saddle nose who were corrected using by auricular cartilage and costal cartilage at Chosun university hospital were analyzed. Results: After a mean interval of 12 months, all patients were satisfied with the esthetic and functional result. Conclusion: Auricular cartilage is an excellent graft material for esthetic and functional reconstruction of mild to moderate saddle nose deformity.

온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링 (Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation)

  • 류희룡;조명환;유인호;문두경
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.